Asceding interest of the scientific community in layered hybrid halide perovskites (LHHPs) as materials for innovative photovoltaic and optoelectronic applications led to unprecedented expansion of this family of compounds, reaching now several hundred refined structures. Despite the unique structural diversity of LHHPs, traditional approaches of describing their structures, such as dividing into Dion-Jacobson (DJ) or Ruddlesden-Popper (RP) phases for mostt structures are ambiguous and unquantifiable. Here, we introduced a quantitative layer shift factor (LSF) for a univocal classification and quantitative comparison of the structures. We also developed an algorithm for automatic calculation of the LSF for such structures. We demonstrate the application of the proposed approach for an analysis of correlations between LSF and band gap to reveal structure-property relationships. Our study gives a simple and useful approach to classify of either the layered perovskite-like structures or other layered compounds composed of layers of vertex-connected octahedra as a structural unit.