Do you want to publish a course? Click here

Genome Compression Against a Reference

90   0   0.0 ( 0 )
 Added by Gaurav Menghani
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Being able to store and transmit human genome sequences is an important part in genomic research and industrial applications. The complete human genome has 3.1 billion base pairs (haploid), and storing the entire genome naively takes about 3 GB, which is infeasible for large scale usage. However, human genomes are highly redundant. Any given individuals genome would differ from another individuals genome by less than 1%. There are tools like DNAZip, which express a given genome sequence by only noting down the differences between the given sequence and a reference genome sequence. This allows losslessly compressing the given genome to ~ 4 MB in size. In this work, we demonstrate additional improvements on top of the DNAZip library, where we show an additional ~ 11% compression on top of DNAZips already impressive results. This would allow further savings in disk space and network costs for transmitting human genome sequences.



rate research

Read More

DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watsons genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.
Data on the number of Open Reading Frames (ORFs) coded by genomes from the 3 domains of Life show some notable general features including essential differences between the Prokaryotes and Eukaryotes, with the number of ORFs growing linearly with total genome size for the former, but only logarithmically for the latter. Assuming that the (protein) coding and non-coding fractions of the genome must have different dynamics and that the non-coding fraction must be controlled by a variety of (unspecified) probability distribution functions, we are able to predict that the number of ORFs for Eukaryotes follows a Benford distribution and has a specific logarithmic form. Using the data for 1000+ genomes available to us in early 2010, we find excellent fits to the data over several orders of magnitude, in the linear regime for the Prokaryote data, and the full non-linear form for the Eukaryote data. In their region of overlap the salient features are statistically congruent, which allows us to: interpret the difference between Prokaryotes and Eukaryotes as the manifestation of the increased demand in the biological functions required for the larger Eukaryotes, estimate some minimal genome sizes, and predict a maximal Prokaryote genome size on the order of 8-12 megabasepairs. These results naturally allow a mathematical interpretation in terms of maximal entropy and, therefore, most efficient information transmission.
Engineering the entire genome of an organism enables large-scale changes in organization, function, and external interactions, with significant implications for industry, medicine, and the environment. Improvements to DNA synthesis and organism engineering are already enabling substantial changes to organisms with megabase genomes, such as Escherichia coli and Saccharomyces cerevisiae. Simultaneously, recent advances in genome-scale modeling are increasingly informing the design of metabolic networks. However, major challenges remain for integrating these and other relevant technologies into workflows that can scale to the engineering of gigabase genomes. In particular, we find that a major under-recognized challenge is coordinating the flow of models, designs, constructs, and measurements across the large teams and complex technological systems that will likely be required for gigabase genome engineering. We recommend that the community address these challenges by 1) adopting and extending existing standards and technologies for representing and exchanging information at the gigabase genomic scale, 2) developing new technologies to address major open questions around data curation and quality control, 3) conducting fundamental research on the integration of modeling and design at the genomic scale, and 4) developing new legal and contractual infrastructure to better enable collaboration across multiple institutions.
Efficient text indexing data structures have enabled large-scale genomic sequence analysis and are used to help solve problems ranging from assembly to read mapping. However, these data structures typically assume that the underlying reference text is static and will not change over the course of the queries being made. Some progress has been made in exploring how certain text indices, like the suffix array, may be updated, rather than rebuilt from scratch, when the underlying reference changes. Yet, these update operations can be complex in practice, difficult to implement, and give fairly pessimistic worst-case bounds. We present a novel data structure, SkipPatch, for maintaining a k-mer-based index over a dynamically changing genome. SkipPatch pairs a hash-based k-mer index with an indexable skip list that is used to efficiently maintain the set of edits that have been applied to the original genome. SkipPatch is practically fast, significantly outperforming the dynamic extended suffix array in terms of update and query speed.
Recent genetic studies and whole-genome sequencing projects have greatly improved our understanding of human variation and clinically actionable genetic information. Smaller ethnic populations, however, remain underrepresented in both individual and large-scale sequencing efforts and hence present an opportunity to discover new variants of biomedical and demographic significance. This report describes the sequencing and analysis of a genome obtained from an individual of Serbian origin, introducing tens of thousands of previously unknown variants to the currently available pool. Ancestry analysis places this individual in close proximity of the Central and Eastern European populations; i.e., closest to Croatian, Bulgarian and Hungarian individuals and, in terms of other Europeans, furthest from Ashkenazi Jewish, Spanish, Sicilian, and Baltic individuals. Our analysis confirmed gene flow between Neanderthal and ancestral pan-European populations, with similar contributions to the Serbian genome as those observed in other European groups. Finally, to assess the burden of potentially disease-causing/clinically relevant variation in the sequenced genome, we utilized manually curated genotype-phenotype association databases and variant-effect predictors. We identified several variants that have previously been associated with severe early-onset disease that is not evident in the proband, as well as variants that could yet prove to be clinically relevant to the proband over the next decades. The presence of numerous private and low-frequency variants along with the observed and predicted disease-causing mutations in this genome exemplify some of the global challenges of genome interpretation, especially in the context of understudied ethnic groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا