Nonadiabatic Topological Energy Pumps with Quasiperiodic Driving


Abstract in English

We derive a topological classification of the steady states of $d$-dimensional lattice models driven by $D$ incommensurate tones. Mapping to a unifying $(d+D)$-dimensional localized model in frequency space reveals anomalous localized topological phases (ALTPs) with no static analog. While the formal classification is determined by $d+D$, the observable signatures of each ALTP depend on the spatial dimension $d$. For each $d$, with $d+D=3$, we identify a quantized circulating current, and corresponding topological edge states. The edge states for a driven wire ($d=1$) function as a quantized, nonadiabatic energy pump between the drives. We design concrete models of quasiperiodically driven qubits and wires that achieve ALTPs of several topological classes. Our results provide a route to experimentally access higher dimensional ALTPs in driven low-dimensional systems.

Download