Do you want to publish a course? Click here

Magnetic control of superconducting heterostructures using compensated antiferromagnets

62   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Due to the lack of a net magnetization both at the interface and in the bulk, antiferromagnets with compensated interfaces may appear incapable of influencing the phase transition in an adjacent superconductor via the spin degree of freedom. We here demonstrate that such an assertion is incorrect by showing that proximity-coupling a compensated antiferromagnetic layer to a superconductor-ferromagnet heterostructure introduces the possibility of controlling the superconducting phase transition. The superconducting critical temperature can in fact be modulated by rotating the magnetization of the single ferromagnetic layer within the plane of the interface, although the system is invariant under rotations of the magnetization in the absence of the antiferromagnetic layer. Moreover, we predict that the superconducting phase transition can trigger a reorientation of the ground state magnetization. Our results show that a compensated antiferromagnetic interface is in fact able to distinguish between different spin-polarizations of triplet Cooper pairs.



rate research

Read More

Artificially engineered topological superconductivity has emerged as a viable route to create Majorana modes, exotic quasiparticles which have raised great expectations for storing and manipulating information in topological quantum computational schemes. The essential ingredients for their realization are spin non-degenerate metallic states proximitized to an s-wave superconductor. In this context, proximity-induced superconductivity in materials with a sizable spin-orbit coupling has been heavily investigated in recent years. Although there is convincing evidence that superconductivity may indeed be induced, it has been difficult to elucidate its topological nature. In this work, we systematically engineer an artificial topological superconductor by progressively introducing superconductivity (Nb) into metals with strong spin-orbital coupling (Pt) and 3D topological surface states (Bi2Te3). Through a longitudinal study of the character of superconducting vortices within s-wave superconducting Nb and proximity-coupled Nb/Pt and Nb/Bi2Te3, we detect the emergence of a zero-bias peak that is directly linked to the presence of topological surface states. Supported by a detailed theoretical model, our results are rationalized in terms of competing energy trends which are found to impose an upper limit to the size of the minigap separating Majorana and trivial modes, its size being ultimately linked to fundamental materials properties.
Exerting control of the magnetic exchange interaction in heterostructures is of both basic interest and has potential for use in spin-based applications relying on quantum effects. We here show that the sign of the exchange interaction in a spin-valve, determining whether the ferro- or antiferromagnetic configuration is favored, can be controlled via an electric voltage. This occurs due to an interplay between a nonequilibrium quasiparticle distribution and the presence of spin-polarized Cooper pairs. Additionally, we show that a voltage-induced distribution controls the anomalous supercurrent that occurs in magnetic Josephson junctions, obviating the challenging task to manipulate the magnetic texture of the system. This demonstrates that two key phenomena in superconducting spintronics, the magnetic exchange interaction and the phase shift generating the anomalous Josephson effect, can be controlled electrically. Our findings are of relevance for spin-based superconducting devices which in practice most likely have to be operated precisely by nonequilibrium effects.
Terahertz emission spectroscopy (TES) has recently played an important role in unveiling the spin dynamics at a terahertz (THz) frequency range. So far, ferromagnetic (FM)/nonmagnetic (NM) heterostructures have been intensively studied as THz sources. Compensated magnets such as a ferrimagnet (FIM) and antiferromagnet (AFM) are other types of magnetic materials with interesting spin dynamics. In this work, we study TES from compensated magnetic heterostructures including CoGd FIM alloy or IrMn AFM layers. Systematic measurements on composition and temperature dependences of THz emission from CoGd/Pt bilayer structures are conducted. It is found that the emitted THz field is determined by the net spin polarization of the laser induced spin current rather than the net magnetization. The temperature robustness of the FIM based THz emitter is also demonstrated. On the other hand, an AFM plays a different role in THz emission. The IrMn/Pt bilayer shows negligible THz signals, whereas Co/IrMn induces sizable THz outputs, indicating that IrMn is not a good spin current generator, but a good detector. Our results not only suggest that a compensated magnet can be utilized for robust THz emission, but also provide a new approach to study the magnetization dynamics especially near the magnetization compensation point.
Motivated by the recent findings of unconventional superconductivity in $mathrm{CoSi_2 / TiSi_2}$ heterostructures, we study the effect of interface induced Rashba spin orbit coupling on the conductance of a three terminal T shape superconducting device. We calculate the differential conductance for this device within the quasi-classical formalism that includes the mixing of triplet-singlet pairing due to the Rashba spin orbit coupling. We discuss our result in the light of the conductance spectra reported by Chiu {it et al.} for $mathrm{CoSi_2 / TiSi_2}$ heterostructures.
We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We find a dominant $d_{x^2-y^2}$-wave solution in both electron- and hole-doped cases. In the quasi-spin triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a $p$-wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor $p$-wave pairing compared to $d_{x^2-y^2}$. The sub-leading pair instability is found to be in the $g$-wave channel, but complex admixtures of $d$ and $g$ are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are non-zero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations give intraband and interband pairing gaps of $d_{x^2-y^2}$ structure and similar gap magnitude. In conclusion, the $d_{x^2-y^2}$ gap dominates for both hole and electron doping inside the spin-density-wave phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا