Do you want to publish a course? Click here

Biexciton Initialization by Two-Photon Excitation in Site-Controlled Quantum Dots: the Complexity of the Antibinding State Case

67   0   0.0 ( 0 )
 Added by Gediminas Juska
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we present a biexciton state population in (111)B oriented site-controlled InGaAs quantum dots (QDs) by resonant two photon excitation. We show that the excited state recombines emitting highly pure single photon pairs entangled in polarization. The discussed cases herein are compelling due to the specific energetic structure of Pyramidal InGaAs QDs - an antibinding biexciton - a state with a positive binding energy. We demonstrate that resonant two-photon excitation of QDs with antibinding biexcitons can lead to a complex excitation-recombination scenario. We systematically observed that the resonant biexciton state population is competing with an acoustic-phonon assisted population of an exciton state. These findings show that under typical two-photon resonant excitation conditions deterministic biexciton state initialization can be compromised. This complication should be taken into account by the community members aiming to utilise similar epitaxial QDs with an antibinding biexciton.



rate research

Read More

195 - Y. Benny , Y. Kodriano , E. Poem 2011
We present experimental and theoretical study of single semiconductor quantum dots excited by two non-degenerate, resonantly tuned variably polarized lasers. The first laser is tuned to excitonic resonances. Depending on its polarization it photogenerates a coherent single exciton state. The second laser is tuned to biexciton resonances. By scanning the energy of the second laser for various polarizations of the two lasers, while monitoring the emission from the biexciton and exciton spectral lines, we map the biexciton photoluminescence excitation spectra. The resonances rich spectra of the second photon absorption are analyzed and fully understood in terms of a many carrier theoretical model which takes into account the direct and exchange Coulomb interactions between the quantum confined carriers.
A study of highly symmetric site-controlled Pyramidal In0.25Ga0.75As quantum dots (QDs) is presented. It is discussed that polarization-entangled photons can be also obtained from Pyramidal QDs of different designs from the one already reported in Juska et al. (Nat. Phot. 7, 527, 2013). Moreover, some of the limitations for a higher density of entangled photon emitters are addressed. Among these issues are (1) a remaining small fine-structure splitting and (2) an effective QD charging under non-resonant excitation conditions, which strongly reduce the number of useful biexciton-exciton recombination events. A possible solution of the charging problem is investigated exploiting a dual-wavelength excitation technique, which allows a gradual QD charge tuning from strongly negative to positive and, eventually, efficient detection of entangled photons from QDs, which would be otherwise ineffective under a single-wavelength (non-resonant) excitation.
We characterized stacked double-pyramidal quantum dots which showed biexciton binding energies close to zero by means of photoluminescence and cross-correlation measurements. It was possible to obtain a sequence of two photons with (nearly) the same energy from the biexciton-exciton-ground state cascade, as corroborated by a basic rate-equation model. This type of two-photon emission is both of relevance for fundamental quantum information theory studies as well as for more exotic applicative fields such as quantum biology.
Physical implementations of large-scale quantum processors based on solid-state platforms benefit from realizations of quantum bits positioned in regular arrays. Self-assembled quantum dots are well-established as promising candidates for quantum optics and quantum information processing, but they are randomly positioned. Site-controlled quantum dots, on the other hand, are grown in pre-defined locations, but have not yet been sufficiently developed to be used as a platform for quantum information processing. In this letter we demonstrate all-optical ultrafast complete coherent control of a qubit formed by the single-spin/trion states of a charged site-controlled nanowire quantum dot. Our results show that site-controlled quantum dots in nanowires are promising hosts of charged-exciton qubits, and that these qubits can be cleanly manipulated in the same fashion as has been demonstrated in randomly-positioned quantum dot samples. Our findings suggest that many of the related excitonic qubit experiments that have been performed over the past 15 years may work well in the more scalable site-controlled systems, making them very promising for the realization of quantum hardware.
An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا