No Arabic abstract
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. The disease presents with symptoms such as shortness of breath, fever, dry cough, and chronic fatigue, amongst others. Sometimes the symptoms of the disease increase so much they lead to the death of the patients. The disease may be asymptomatic in some patients in the early stages, which can lead to increased transmission of the disease to others. Many studies have tried to use medical imaging for early diagnosis of COVID-19. This study attempts to review papers on automatic methods for medical image analysis and diagnosis of COVID-19. For this purpose, PubMed, Google Scholar, arXiv and medRxiv were searched to find related studies by the end of April 2020, and the essential points of the collected studies were summarised. The contribution of this study is four-fold: 1) to use as a tutorial of the field for both clinicians and technologists, 2) to comprehensively review the characteristics of COVID-19 as presented in medical images, 3) to examine automated artificial intelligence-based approaches for COVID-19 diagnosis based on the accuracy and the method used, 4) to express the research limitations in this field and the methods used to overcome them. COVID-19 reveals signs in medical images can be used for early diagnosis of the disease even in asymptomatic patients. Using automated machine learning-based methods can diagnose the disease with high accuracy from medical images and reduce time, cost and error of diagnostic procedure. It is recommended to collect bulk imaging data from patients in the shortest possible time to improve the performance of COVID-19 automated diagnostic methods.
The outbreak of novel coronavirus disease (COVID- 19) has claimed millions of lives and has affected all aspects of human life. This paper focuses on the application of deep learning (DL) models to medical imaging and drug discovery for managing COVID-19 disease. In this article, we detail various medical imaging-based studies such as X-rays and computed tomography (CT) images along with DL methods for classifying COVID-19 affected versus pneumonia. The applications of DL techniques to medical images are further described in terms of image localization, segmentation, registration, and classification leading to COVID-19 detection. The reviews of recent papers indicate that the highest classification accuracy of 99.80% is obtained when InstaCovNet-19 DL method is applied to an X-ray dataset of 361 COVID-19 patients, 362 pneumonia patients and 365 normal people. Furthermore, it can be seen that the best classification accuracy of 99.054% can be achieved when EDL_COVID DL method is applied to a CT image dataset of 7500 samples where COVID-19 patients, lung tumor patients and normal people are equal in number. Moreover, we illustrate the potential DL techniques in drug or vaccine discovery in combating the coronavirus. Finally, we address a number of problems, concerns and future research directions relevant to DL applications for COVID-19.
Radiological image is currently adopted as the visual evidence for COVID-19 diagnosis in clinical. Using deep models to realize automated infection measurement and COVID-19 diagnosis is important for faster examination based on radiological imaging. Unfortunately, collecting large training data systematically in the early stage is difficult. To address this problem, we explore the feasibility of learning deep models for COVID-19 diagnosis from a single radiological image by resorting to synthesizing diverse radiological images. Specifically, we propose a novel conditional generative model, called CoSinGAN, which can be learned from a single radiological image with a given condition, i.e., the annotations of the lung and COVID-19 infection. Our CoSinGAN is able to capture the conditional distribution of visual finds of COVID-19 infection, and further synthesize diverse and high-resolution radiological images that match the input conditions precisely. Both deep classification and segmentation networks trained on synthesized samples from CoSinGAN achieve notable detection accuracy of COVID-19 infection. Such results are significantly better than the counterparts trained on the same extremely small number of real samples (1 or 2 real samples) by using strong data augmentation, and approximate to the counterparts trained on large dataset (2846 real images). It confirms our method can significantly reduce the performance gap between deep models trained on extremely small dataset and on large dataset, and thus has the potential to realize learning COVID-19 diagnosis from few radiological images in the early stage of COVID-19 pandemic. Our codes are made publicly available at https://github.com/PengyiZhang/CoSinGAN.
The pandemic of COVID-19 has caused millions of infections, which has led to a great loss all over the world, socially and economically. Due to the false-negative rate and the time-consuming of the conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, diagnosing based on X-ray images and Computed Tomography (CT) images has been widely adopted. Therefore, researchers of the computer vision area have developed many automatic diagnosing models based on machine learning or deep learning to assist the radiologists and improve the diagnosing accuracy. In this paper, we present a review of these recently emerging automatic diagnosing models. 70 models proposed from February 14, 2020, to July 21, 2020, are involved. We analyzed the models from the perspective of preprocessing, feature extraction, classification, and evaluation. Based on the limitation of existing models, we pointed out that domain adaption in transfer learning and interpretability promotion would be the possible future directions.
Early detection of the coronavirus disease 2019 (COVID-19) helps to treat patients timely and increase the cure rate, thus further suppressing the spread of the disease. In this study, we propose a novel deep learning based detection and similar case recommendation network to help control the epidemic. Our proposed network contains two stages: the first one is a lung region segmentation step and is used to exclude irrelevant factors, and the second is a detection and recommendation stage. Under this framework, in the second stage, we develop a dual-children network (DuCN) based on a pre-trained ResNet-18 to simultaneously realize the disease diagnosis and similar case recommendation. Besides, we employ triplet loss and intrapulmonary distance maps to assist the detection, which helps incorporate tiny differences between two images and is conducive to improving the diagnostic accuracy. For each confirmed COVID-19 case, we give similar cases to provide radiologists with diagnosis and treatment references. We conduct experiments on a large publicly available dataset (CC-CCII) and compare the proposed model with state-of-the-art COVID-19 detection methods. The results show that our proposed model achieves a promising clinical performance.
Novel coronavirus (COVID-19) outbreak, has raised a calamitous situation all over the world and has become one of the most acute and severe ailments in the past hundred years. The prevalence rate of COVID-19 is rapidly rising every day throughout the globe. Although no vaccines for this pandemic have been discovered yet, deep learning techniques proved themselves to be a powerful tool in the arsenal used by clinicians for the automatic diagnosis of COVID-19. This paper aims to overview the recently developed systems based on deep learning techniques using different medical imaging modalities like Computer Tomography (CT) and X-ray. This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks. It also highlights the data partitioning techniques and various performance measures developed by researchers in this field. A taxonomy is drawn to categorize the recent works for proper insight. Finally, we conclude by addressing the challenges associated with the use of deep learning methods for COVID-19 detection and probable future trends in this research area. This paper is intended to provide experts (medical or otherwise) and technicians with new insights into the ways deep learning techniques are used in this regard and how they potentially further works in combatting the outbreak of COVID-19.