No Arabic abstract
Transformer models have shown impressive performance on a variety of NLP tasks. Off-the-shelf, pre-trained models can be fine-tuned for specific NLP classification tasks, reducing the need for large amounts of additional training data. However, little research has addressed how much data is required to accurately fine-tune such pre-trained transformer models, and how much data is needed for accurate prediction. This paper explores the usability of BERT (a Transformer model for word embedding) for gender prediction on social media. Forensic applications include detecting gender obfuscation, e.g. males posing as females in chat rooms. A Dutch BERT model is fine-tuned on different samples of a Dutch Twitter dataset labeled for gender, varying in the number of tweets used per person. The results show that finetuning BERT contributes to good gender classification performance (80% F1) when finetuned on only 200 tweets per person. But when using just 20 tweets per person, the performance of our classifier deteriorates non-steeply (to 70% F1). These results show that even with relatively small amounts of data, BERT can be fine-tuned to accurately help predict the gender of Twitter users, and, consequently, that it is possible to determine gender on the basis of just a low volume of tweets. This opens up an operational perspective on the swift detection of gender.
The goal of Author Profiling (AP) is to identify demographic aspects (e.g., age, gender) from a given set of authors by analyzing their written texts. Recently, the AP task has gained interest in many problems related to computer forensics, psychology, marketing, but specially in those related with social media exploitation. As known, social media data is shared through a wide range of modalities (e.g., text, images and audio), representing valuable information to be exploited for extracting valuable insights from users. Nevertheless, most of the current work in AP using social media data has been devoted to analyze textual information only, and there are very few works that have started exploring the gender identification using visual information. Contrastingly, this paper focuses in exploiting the visual modality to perform both age and gender identification in social media, specifically in Twitter. Our goal is to evaluate the pertinence of using visual information in solving the AP task. Accordingly, we have extended the Twitter corpus from PAN 2014, incorporating posted images from all the users, making a distinction between tweeted and retweeted images. Performed experiments provide interesting evidence on the usefulness of visual information in comparison with traditional textual representations for the AP task.
In this study, we proposed a convolutional neural network model for gender prediction using English Twitter text as input. Ensemble of proposed model achieved an accuracy at 0.8237 on gender prediction and compared favorably with the state-of-the-art performance in a recent author profiling task. We further leveraged the trained models to predict the gender labels from an HPV vaccine related corpus and identified gender difference in public perceptions regarding HPV vaccine. The findings are largely consistent with previous survey-based studies.
Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect peoples gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality. The implementation of the proposed framework is released.
User profiling means exploiting the technology of machine learning to predict attributes of users, such as demographic attributes, hobby attributes, preference attributes, etc. Its a powerful data support of precision marketing. Existing methods mainly study network behavior, personal preferences, post texts to build user profile. Through our data analysis of micro-blog, we find that females show more positive and have richer emotions than males in online social platform. This difference is very conducive to the distinction between genders. Therefore, we argue that sentiment context is important as well for user profiling.This paper focuses on exploiting microblog user posts to predict one of the demographic labels: gender. We propose a Sentiment Representation Learning based Multi-Layer Perceptron(SRL-MLP) model to classify gender. First we build a sentiment polarity classifier in advance by training Long Short-Term Memory(LSTM) model on e-commerce review corpus. Next we transfer sentiment representation to a basic MLP network. Last we conduct experiments on gender classification by sentiment representation. Experimental results show that our approach can improve gender classification accuracy by 5.53%, from 84.20% to 89.73%.
We present our system for the CLIN29 shared task on cross-genre gender detection for Dutch. We experimented with a multitude of neural models (CNN, RNN, LSTM, etc.), more traditional models (SVM, RF, LogReg, etc.), different feature sets as well as data pre-processing. The final results suggested that using tokenized, non-lowercased data works best for most of the neural models, while a combination of word clusters, character trigrams and word lists showed to be most beneficial for the majority of the more traditional (that is, non-neural) models, beating features used in previous tasks such as n-grams, character n-grams, part-of-speech tags and combinations thereof. In contradiction with the results described in previous comparable shared tasks, our neural models performed better than our best traditional approaches with our best feature set-up. Our final model consisted of a weighted ensemble model combining the top 25 models. Our final model won both the in-domain gender prediction task and the cross-genre challenge, achieving an average accuracy of 64.93% on the in-domain gender prediction task, and 56.26% on cross-genre gender prediction.