Do you want to publish a course? Click here

A Spherical Hidden Markov Model for Semantics-Rich Human Mobility Modeling

97   0   0.0 ( 0 )
 Added by Wanzheng Zhu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of modeling human mobility from semantic trace data, wherein each GPS record in a trace is associated with a text message that describes the users activity. Existing methods fall short in unveiling human movement regularities, because they either do not model the text data at all or suffer from text sparsity severely. We propose SHMM, a multi-modal spherical hidden Markov model for semantics-rich human mobility modeling. Under the hidden Markov assumption, SHMM models the generation process of a given trace by jointly considering the observed location, time, and text at each step of the trace. The distinguishing characteristic of SHMM is the text modeling part. We use fixed-size vector representations to encode the semantics of the text messages, and model the generation of the l2-normalized text embeddings on a unit sphere with the von Mises-Fisher (vMF) distribution. Compared with other alternatives like multi-variate Gaussian, our choice of the vMF distribution not only incurs much fewer parameters, but also better leverages the discriminative power of text embeddings in a directional metric space. The parameter inference for the vMF distribution is non-trivial since it involves functional inversion of ratios of Bessel functions. We theoretically prove that: 1) the classical Expectation-Maximization algorithm can work with vMF distributions; and 2) while closed-form solutions are hard to be obtained for the M-step, Newtons method is guaranteed to converge to the optimal solution with quadratic convergence rate. We have performed extensive experiments on both synthetic and real-life data. The results on synthetic data verify our theoretical analysis; while the results on real-life data demonstrate that SHMM learns meaningful semantics-rich mobility models, outperforms state-of-the-art mobility models for next location prediction, and incurs lower training cost.



rate research

Read More

Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for modeling discrete time series. In general, learning HMMs from data is computationally hard (under cryptographic assumptions), and practitioners typically resort to search heuristics which suffer from the usual local optima issues. We prove that under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an efficient and provably correct algorithm for learning HMMs. The sample complexity of the algorithm does not explicitly depend on the number of distinct (discrete) observations---it implicitly depends on this quantity through spectral properties of the underlying HMM. This makes the algorithm particularly applicable to settings with a large number of observations, such as those in natural language processing where the space of observation is sometimes the words in a language. The algorithm is also simple, employing only a singular value decomposition and matrix multiplications.
The study of human mobility is crucial due to its impact on several aspects of our society, such as disease spreading, urban planning, well-being, pollution, and more. The proliferation of digital mobility data, such as phone records, GPS traces, and social media posts, combined with the predictive power of artificial intelligence, triggered the application of deep learning to human mobility. Existing surveys focus on single tasks, data sources, mechanistic or traditional machine learning approaches, while a comprehensive description of deep learning solutions is missing. This survey provides a taxonomy of mobility tasks, a discussion on the challenges related to each task and how deep learning may overcome the limitations of traditional models, a description of the most relevant solutions to the mobility tasks described above and the relevant challenges for the future. Our survey is a guide to the leading deep learning solutions to next-location prediction, crowd flow prediction, trajectory generation, and flow generation. At the same time, it helps deep learning scientists and practitioners understand the fundamental concepts and the open challenges of the study of human mobility.
We present trellis networks, a new architecture for sequence modeling. On the one hand, a trellis network is a temporal convolutional network with special structure, characterized by weight tying across depth and direct injection of the input into deep layers. On the other hand, we show that truncated recurrent networks are equivalent to trellis networks with special sparsity structure in their weight matrices. Thus trellis networks with general weight matrices generalize truncated recurrent networks. We leverage these connections to design high-performing trellis networks that absorb structural and algorithmic elements from both recurrent and convolutional models. Experiments demonstrate that trellis networks outperform the current state of the art methods on a variety of challenging benchmarks, including word-level language modeling and character-level language modeling tasks, and stress tests designed to evaluate long-term memory retention. The code is available at https://github.com/locuslab/trellisnet .
62 - Yu Wang , Jiayi Liu , Yuxiang Liu 2017
We present LADDER, the first deep reinforcement learning agent that can successfully learn control policies for large-scale real-world problems directly from raw inputs composed of high-level semantic information. The agent is based on an asynchronous stochastic variant of DQN (Deep Q Network) named DASQN. The inputs of the agent are plain-text descriptions of states of a game of incomplete information, i.e. real-time large scale online auctions, and the rewards are auction profits of very large scale. We apply the agent to an essential portion of JDs online RTB (real-time bidding) advertising business and find that it easily beats the former state-of-the-art bidding policy that had been carefully engineered and calibrated by human experts: during JD.coms June 18th anniversary sale, the agent increased the companys ads revenue from the portion by more than 50%, while the advertisers ROI (return on investment) also improved significantly.
80 - Sidi Lu , Lantao Yu , Siyuan Feng 2018
In this paper, we study the generative models of sequential discrete data. To tackle the exposure bias problem inherent in maximum likelihood estimation (MLE), generative adversarial networks (GANs) are introduced to penalize the unrealistic generated samples. To exploit the supervision signal from the discriminator, most previous models leverage REINFORCE to address the non-differentiable problem of sequential discrete data. However, because of the unstable property of the training signal during the dynamic process of adversarial training, the effectiveness of REINFORCE, in this case, is hardly guaranteed. To deal with such a problem, we propose a novel approach called Cooperative Training (CoT) to improve the training of sequence generative models. CoT transforms the min-max game of GANs into a joint maximization framework and manages to explicitly estimate and optimize Jensen-Shannon divergence. Moreover, CoT works without the necessity of pre-training via MLE, which is crucial to the success of previous methods. In the experiments, compared to existing state-of-the-art methods, CoT shows superior or at least competitive performance on sample quality, diversity, as well as training stability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا