Do you want to publish a course? Click here

Probing new light gauge bosons with gravitational-wave interferometers using an adapted semi-coherent method

116   0   0.0 ( 0 )
 Added by Andrew L. Miller
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We adapt a method, originally developed for searches for quasi-monochromatic, quasi-infinite gravitational-wave signals, to directly detect new light gauge bosons with laser interferometers, which could be candidates for dark matter. To search for these particles, we optimally choose the analysis coherence time as a function of boson mass, such that all of the signal power will be confined to one frequency bin. We focus on the dark photon, a gauge boson that could couple to baryon or baryon-lepton number, and explain that its interactions with gravitational-wave interferometers result in a narrow-band, stochastic signal. We provide an end-to-end analysis scheme, estimate its computational cost, and investigate follow-up techniques to confirm or rule out dark matter candidates. Furthermore, we derive a theoretical estimate of the sensitivity, and show that it is consistent with both the empirical sensitivity determined through simulations, and results from a cross-correlation search. Finally, we place Feldman-Cousins upper limits using data from LIGO Livingstons second observing run, which give a new and strong constraint on the coupling of gauge bosons to the interferometer.



rate research

Read More

Advanced LIGO and the next generation of ground-based detectors aim to capture many more binary coalescences through improving sensitivity and duty cycle. Earthquakes have always been a limiting factor at low frequency where neither the pendulum suspension nor the active controls provide sufficient isolation to the test mass mirrors. Several control strategies have been proposed to reduce the impact of teleseismic events by switching to a robust configuration with less aggressive feedback. The continental United States has witnessed a huge increase in the number of induced earthquake events primarily associated with hydraulic fracking-related waste water re-injection. Effects from these differ from teleseismic earthquakes primarily because of their depth which is in turn linked to their triggering mechanism. In this paper, we discuss the impact caused due to these low magnitude regional earthquakes and explore ways to minimize the impact of induced seismicity on the detector.
In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such additional polarization modes appear due to additional degrees of freedom in modified theories of gravitation or theories with extra dimensions. Thus, observations of gravitational waves can be utilized to constrain the extended models of gravitation. In this paper, we investigate detectability of additional polarization modes of gravitational waves, particularly focusing on a stochastic gravitational-wave background, with laser-interferometric detectors on the Earth. We found that multiple detectors can separate the mixture of polarization modes in detector outputs, and that they have almost the same sensitivity to each polarization mode of stochastic gravitational-wave background.
One of the most ambitious goals of gravitational-wave astronomy is to observe the stochastic gravitational-wave background. Correlated noise in two or more detectors can introduce a systematic error, which limits the sensitivity of stochastic searches. We report on measurements of correlated magnetic noise from Schumann resonances at the widely separated LIGO and Virgo detectors. We investigate the effect of this noise on a global network of interferometers and derive a constraint on the allowable coupling of environmental magnetic fields to test mass motion in gravitational-wave detectors. We find that while correlated noise from global electromagnetic fields could be safely ignored for initial LIGO stochastic searches, it could severely impact Advanced LIGO and third-generation detectors.
We carried out a computer simulation of a large gravitational wave (GW) interferometer using the specifications of the LIGO instruments. We find that if in addition to the carrier, a single sideband offset from the carrier by the fsr frequency (the free spectral range of the arm cavities) is injected, it is equally sensitive to GW signals as is the carrier. The amplitude of the fsr sideband signal in the DC region is generally much less subject to noise than the carrier, and this makes possible the detection of periodic signals with frequencies well below the so-called seismic wall.
We describe the extension to multiple datasets of a coherent method for the search of continuous gravitational wave signals, based on the computation of 5-vectors. In particular, we show how to coherently combine different datasets belonging to the same detector or to different detectors. In the latter case the coherent combination is the way to have the maximum increase in signal-to-noise ratio. If the datasets belong to the same detector the advantage comes mainly from the properties of a quantity called {it coherence} which is helpful (in both cases, in fact) in rejecting false candidates. The method has been tested searching for simulated signals injected in Gaussian noise and the results of the simulations are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا