No Arabic abstract
The early-type galaxy NGC 1316 hosts about 10^7 solar masses of dust within a central radius of 5 kpc. These prominent dust structures are believed to have an external origin, which is also a popular interpretation for other dusty early-type galaxies. We use archival Hubble Space Telescope/ACS data to construct colour maps that delineate the dust pattern in detail, and we compare these data with maps constructed with data from MUSE of the VLT at the European Southern Observatory. Twelve MUSE pointings in wide field mode form a mosaic of the central 3.3x2.4. We use the tool PyParadise to fit the stellar population. We use the residual emission lines and the residual interstellar absorption NaI D-lines, and we measure line strengths, the velocity field, and the velocity dispersion field. The emission lines resemble LINER lines, with [NII] being the strongest line everywhere. Ionising sources are plausibly the post-asymptotic giant branch stars of the old or intermediate-age stellar population. There is a striking match between the dust structures, ionised gas, and atomic gas distributions, the last of which is manifested by interstellar absorption residuals of the stellar NaI D-lines. In the dust-free regions, the interstellar NaI D-lines appear in emission, which is indicative of a galactic wind. The velocity field of the ionised gas (and thus of the dust) is characterised by small-scale turbulent movements that indicate short lifetimes. At the very centre, a bipolar velocity field of the ionised gas is observed, which we interpret as an outflow. We identify a strongly inclined gaseous dusty disc along the major axis of NGC1316. A straight beam of ionised gas with a length of about 4 kpc emanates from the centre. Our findings are strongly suggestive of a dusty outflow. Nuclear outflows may be important dust-producing machines in galaxies. (Abridged)
We present and interpret observations of atomic and molecular gas toward the southern elliptical galaxy NGC 1316 (Fornax A), a strong double-lobe radio source with a disturbed optical morphology that includes numerous shells and loops. The 12CO(1-0), 12CO(2-1), and HI observations were made with SEST and the VLA. CO emission corresponding to a total molecular hydrogen mass of 5x10^8 Msun was detected toward the central position as well as northwest and southeast of the nucleus in the regions of the dust patches. The origin of that gas is likely external and due to accretion of one or several small gas-rich galaxies. HI was not detected in the central region of NGC1316, but ~2x10^7 Msun of atomic gas was found toward the giant HII region discovered by Schweizer (1980) located 6.7 arcmin (or 36.2 kpc) from the nucleus. HI was also found at three other locations in the outer part of NGC 1316. The HI distributions and kinematics of the two nearby spiral companions of NGC 1316, NGC 1317 (a barred galaxy to the north) and NGC 1310 (to the west) could be studied. Both galaxies have unusually small HI disks that may have been affected by ram-pressure stripping.
Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 micron and Spitzer mid-infrared spectra. By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.6 to 5.5. Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 micron images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 micron images to estimate the stellar continuum contribution to the emission in the 12 and 22 micron bands. The two galaxies differ markedly in their mid-IR properties. The 3.4 micron brightness distribution can be well represented by the superposition of two Sersic models in NGC 1316 and by a Sersic model and an exponential disk in NGC 612. The WISE colors of NGC 1316 are typical of those of early-type galaxies; those of NGC 612 are in the range found for star-forming galaxies. From the 22 micron luminosity, we infer a star-formation rate of about 0.7 solar masses per year in NGC 1316 and about 7 solar masses per year in NGC 612. Spitzer spectroscopy shows that the 7.7-to-11.3 micron PAH line ratio is significantly lower in NGC 1316 than in NGC 612. The WISE images reveal resolved emission from dust in the central 1-2 of the galaxies. (Abridged)
This paper presents Gemini-$gri$ high quality photometry for cluster candidates in the field of NGC 1316 (Fornax A) as part of a study that also includes GMOS spectroscopy. A preliminary discussion of the photometric data indicates the presence of four stellar cluster populations with distinctive features in terms of age, chemical abundance and spatial distribution. Two of them seem to be the usually old (metal poor and metal rich) populations typically found in elliptical galaxies. In turn, an intermediate-age (5 Gyr) globular cluster population is the dominant component of the sample (as reported by previous papers). We also find a younger cluster population with a tentative age of $approx$ 1 Gyr.
We present a multi-wavelength study (from X-ray to millimetre) of the nearby low-luminosity active galactic nucleus (LLAGN) NGC 7213. We combine the information from the different bands to characterize the source in terms of contribution from the AGN and the host-galaxy interstellar medium (ISM). This approach allows us to provide a coherent picture of the role of the AGN and its impact, if any, on the star formation and molecular gas properties of the host galaxy. We focused our study on archival ALMA Cycle 1 observations, where the CO(2-1) emission line has been used as a tracer of the molecular gas. Using the 3DBarolo code on ALMA data, we performed the modelling of the molecular gas kinematics traced by the CO(2-1) emission, finding a rotationally dominated pattern. The host-galaxy molecular gas mass was estimated from the integrated CO(2-1) emission line obtained with APEX data, assuming an $alpha_{CO}$ conversion factor. By using the ALMA data, we would have underestimated the gas masses by a factor $sim$3, given the filtering out of the large scale emission in interferometric observations. We also performed a complete X-ray spectral analysis on archival observations, revealing a relatively faint and unobscured AGN. The AGN results to be too faint to significantly affect the properties of the host-galaxy, such as star formation activity and molecular gas kinematics and distribution.
We present MeerKAT observations of neutral hydrogen gas (HI) in the nearby merger remnant NGC 1316 (Fornax A), the brightest member of a galaxy group which is falling into the Fornax cluster. We find HI on a variety of scales, from the galaxy centre to its large-scale environment. For the first time we detect HI at large radii (70 - 150 kpc in projection), mostly distributed on two long tails associated with the galaxy. Gas in the tails dominates the HI mass of NGC 1316: 7e+8 Msun -- 14 times more than in previous observations. The total HI mass is comparable to the amount of neutral gas found inside the stellar body, mostly in molecular form. The HI tails are associated with faint optical tidal features thought to be the remnant of a galaxy merger occurred a few billion years ago. They demonstrate that the merger was gas-rich. During the merger, tidal forces pulled some gas and stars out to large radii, where we now detect them in the form of optical tails and, thanks to our new data, HI tails; while torques caused the remaining gas to flow towards the centre of the remnant, where it was converted into molecular gas and fuelled the starburst revealed by the galaxys stellar populations. Several of the observed properties of NGC 1316 can be reproduced by a ~ 10:1 merger between a dominant, gas-poor early-type galaxy and a smaller, gas-rich spiral occurred 1 - 3 Gyr ago, likely followed by subsequent accretion of satellite galaxies.