Do you want to publish a course? Click here

Deep kernel processes

150   0   0.0 ( 0 )
 Added by Laurence Aitchison
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We define deep kernel processes in which positive definite Gram matrices are progressively transformed by nonlinear kernel functions and by sampling from (inverse) Wishart distributions. Remarkably, we find that deep Gaussian processes (DGPs), Bayesian neural networks (BNNs), infinite BNNs, and infinite BNNs with bottlenecks can all be written as deep kernel processes. For DGPs the equivalence arises because the Gram matrix formed by the inner product of features is Wishart distributed, and as we show, standard isotropic kernels can be written entirely in terms of this Gram matrix -- we do not need knowledge of the underlying features. We define a tractable deep kernel process, the deep inverse Wishart process, and give a doubly-stochastic inducing-point variational inference scheme that operates on the Gram matrices, not on the features, as in DGPs. We show that the deep inverse Wishart process gives superior performance to DGPs and infinite BNNs on standard fully-connected baselines.



rate research

Read More

Gaussian processes (GPs) provide a gold standard for performance in online settings, such as sample-efficient control and black box optimization, where we need to update a posterior distribution as we acquire data in a sequential fashion. However, updating a GP posterior to accommodate even a single new observation after having observed $n$ points incurs at least $O(n)$ computations in the exact setting. We show how to use structured kernel interpolation to efficiently recycle computations for constant-time $O(1)$ online updates with respect to the number of points $n$, while retaining exact inference. We demonstrate the promise of our approach in a range of online regression and classification settings, Bayesian optimization, and active sampling to reduce error in malaria incidence forecasting. Code is available at https://github.com/wjmaddox/online_gp.
Deep kernel learning (DKL) leverages the connection between Gaussian process (GP) and neural networks (NN) to build an end-to-end, hybrid model. It combines the capability of NN to learn rich representations under massive data and the non-parametric property of GP to achieve automatic regularization that incorporates a trade-off between model fit and model complexity. However, the deterministic encoder may weaken the model regularization of the following GP part, especially on small datasets, due to the free latent representation. We therefore present a complete deep latent-variable kernel learning (DLVKL) model wherein the latent variables perform stochastic encoding for regularized representation. We further enhance the DLVKL from two aspects: (i) the expressive variational posterior through neural stochastic differential equation (NSDE) to improve the approximation quality, and (ii) the hybrid prior taking knowledge from both the SDE prior and the posterior to arrive at a flexible trade-off. Intensive experiments imply that the DLVKL-NSDE performs similarly to the well calibrated GP on small datasets, and outperforms existing deep GPs on large datasets.
Gaussian processes offer an attractive framework for predictive modeling from longitudinal data, i.e., irregularly sampled, sparse observations from a set of individuals over time. However, such methods have two key shortcomings: (i) They rely on ad hoc heuristics or expensive trial and error to choose the effective kernels, and (ii) They fail to handle multilevel correlation structure in the data. We introduce Longitudinal deep kernel Gaussian process regression (L-DKGPR), which to the best of our knowledge, is the only method to overcome these limitations by fully automating the discovery of complex multilevel correlation structure from longitudinal data. Specifically, L-DKGPR eliminates the need for ad hoc heuristics or trial and error using a novel adaptation of deep kernel learning that combines the expressive power of deep neural networks with the flexibility of non-parametric kernel methods. L-DKGPR effectively learns the multilevel correlation with a novel addictive kernel that simultaneously accommodates both time-varying and the time-invariant effects. We derive an efficient algorithm to train L-DKGPR using latent space inducing points and variational inference. Results of extensive experiments on several benchmark data sets demonstrate that L-DKGPR significantly outperforms the state-of-the-art longitudinal data analysis (LDA) methods.
Gaussian processes (GPs) are used to make medical and scientific decisions, including in cardiac care and monitoring of carbon dioxide emissions. But the choice of GP kernel is often somewhat arbitrary. In particular, uncountably many kernels typically align with qualitative prior knowledge (e.g. function smoothness or stationarity). But in practice, data analysts choose among a handful of convenient standard kernels (e.g. squared exponential). In the present work, we ask: Would decisions made with a GP differ under other, qualitatively interchangeable kernels? We show how to formulate this sensitivity analysis as a constrained optimization problem over a finite-dimensional space. We can then use standard optimizers to identify substantive changes in relevant decisions made with a GP. We demonstrate in both synthetic and real-world examples that decisions made with a GP can exhibit substantial sensitivity to kernel choice, even when prior draws are qualitatively interchangeable to a user.
85 - Yueming Lyu , Ivor Tsang 2021
Recent studies show a close connection between neural networks (NN) and kernel methods. However, most of these analyses (e.g., NTK) focus on the influence of (infinite) width instead of the depth of NN models. There remains a gap between theory and practical network designs that benefit from the depth. This paper first proposes a novel kernel family named Neural Optimization Kernel (NOK). Our kernel is defined as the inner product between two $T$-step updated functionals in RKHS w.r.t. a regularized optimization problem. Theoretically, we proved the monotonic descent property of our update rule for both convex and non-convex problems, and a $O(1/T)$ convergence rate of our updates for convex problems. Moreover, we propose a data-dependent structured approximation of our NOK, which builds the connection between training deep NNs and kernel methods associated with NOK. The resultant computational graph is a ResNet-type finite width NN. Our structured approximation preserved the monotonic descent property and $O(1/T)$ convergence rate. Namely, a $T$-layer NN performs $T$-step monotonic descent updates. Notably, we show our $T$-layered structured NN with ReLU maintains a $O(1/T)$ convergence rate w.r.t. a convex regularized problem, which explains the success of ReLU on training deep NN from a NN architecture optimization perspective. For the unsupervised learning and the shared parameter case, we show the equivalence of training structured NN with GD and performing functional gradient descent in RKHS associated with a fixed (data-dependent) NOK at an infinity-width regime. For finite NOKs, we prove generalization bounds. Remarkably, we show that overparameterized deep NN (NOK) can increase the expressive power to reduce empirical risk and reduce the generalization bound at the same time. Extensive experiments verify the robustness of our structured NOK blocks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا