Lyapunov-type inequalities for a Sturm-Liouville problem of the one-dimensional $p$-Laplacian


Abstract in English

This article considers the eigenvalue problem for the Sturm-Liouville problem including $p$-Laplacian begin{align*} begin{cases} left(vert uvert^{p-2}uright)+left(lambda+r(x)right)vert uvert ^{p-2}u=0,,, xin (0,pi_{p}), u(0)=u(pi_{p})=0, end{cases} end{align*} where $1<p<infty$, $pi_{p}$ is the generalized $pi$ given by $pi_{p}=2pi/left(psin(pi/p)right)$, $rin C[0,pi_{p}]$ and $lambda<p-1$. Sharp Lyapunov-type inequalities, which are necessary conditions for the existence of nontrivial solutions of the above problem are presented. Results are obtained through the analysis of variational problem related to a sharp Sobolev embedding and generalized trigonometric and hyperbolic functions.

Download