Do you want to publish a course? Click here

Semi-wave, traveling wave and spreading speed for monostable cooperative systems with nonlocal diffusion and free boundaries

80   0   0.0 ( 0 )
 Added by Yihong Du Prof
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider a class of cooperative reaction-diffusion systems with free boundaries in one space dimension, where the diffusion terms are nonlocal, given by integral operators involving suitable kernel functions, and they are allowed not to appear in some of the equations in the system. The problem is monostable in nature, resembling the well known Fisher-KPP equation. Such a system covers various models arising from mathematical biology, with the Fisher-KPP equation as the simplest special case, where a spreading-vanishing dichotomy is known to govern the long time dynamical behaviour. The question of spreading speed is widely open for such systems except for the scalar case. In this paper, we develop a systematic approach to determine the spreading profile of the system, and obtain threshold conditions on the kernel functions which decide exactly when the spreading has finite speed, or infinite speed (accelerated spreading). This relies on a rather complete understanding of both the associated semi-waves and traveling waves. When the spreading speed is finite, we show that the speed is determined by a particular semi-wave, and obtain sharp estimates of the semi-wave profile and the spreading speed. For kernel functions that behave like $|x|^{-gamma}$ near infinity, we are able to obtain better estimates of the spreading speed for both the finite speed case, and the infinite speed case, which appear to be the first for this kind of free boundary problems, even for the special Fisher-KPP equation.



rate research

Read More

63 - Yihong Du , Fang Li , Maolin Zhou 2019
In Cao, Du, Li and Li [8], a nonlocal diffusion model with free boundaries extending the local diffusion model of Du and Lin [12] was introduced and studied. For Fisher-KPP type nonlinearities, its long-time dynamical behaviour is shown to follow a spreading-vanishing dichotomy. However, when spreading happens, the question of spreading speed was left open in [8]. In this paper we obtain a rather complete answer to this question. We find a condition on the kernel function such that spreading grows linearly in time exactly when this condition holds, which is achieved by completely solving the associated semi-wave problem that determines this linear speed; when the kernel function violates this condition, we show that accelerating spreading happens.
Invasion phenomena for heterogeneous reaction-diffusion equations are contemporary and challenging questions in applied mathematics. In this paper we are interested in the question of spreading for a reaction-diffusion equation when the subdomain where the reaction term is positive is shifting/contracting at a given speed $c$. This problem arises in particular in the modelling of the impact of climate change on population dynamics. By placing ourselves in the appropriate moving frame, this leads us to consider a reaction-diffusion-advection equation with a heterogeneous in space reaction term, in dimension $Ngeq1$. We investigate the behaviour of the solution $u$ depending on the value of the advection constant~$c$, which typically stands for the velocity of climate change. We find that, when the initial datum is compactly supported, there exists precisely three ranges for $c$ leading to drastically different situations. In the lower speed range the solution always spreads, while in the upper range it always vanishes. More surprisingly, we find that that both spreading and vanishing may occur in an intermediate speed range. The threshold between those two outcomes is always sharp, both with respect to $c$ and to the initial condition. We also briefly consider the case of an exponentially decreasing initial condition, where we relate the decreasing rate of the initial condition with the range of values of~$c$ such that spreading occurs.
We study a class of free boundary systems with nonlocal diffusion, which are natural extensions of the corresponding free boundary problems of reaction diffusion systems. As before the free boundary represents the spreading front of the species, but here the population dispersal is described by nonlocal diffusion instead of local diffusion. We prove that such a nonlocal diffusion problem with free boundary has a unique global solution, and for models with Lotka-Volterra type competition or predator-prey growth terms, we show that a spreading-vanishing dichotomy holds, and obtain criteria for spreading and vanishing; moreover, for the weak competition case and for the weak predation case, we can determine the long-time asymptotic limit of the solution when spreading happens. Compared with the single species free boundary model with nonlocal diffusion considered recently in cite{CDLL}, and the two species cases with local diffusion extensively studied in the literature, the situation considered in this paper involves several extra difficulties, which are overcome by the use of some new techniques.
139 - Hiroki Yagisita 2008
We consider the nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We gives a sufficient condition for existence of traveling waves, and a necessary condition for existence of periodic traveling waves.
We consider an epidemic model with nonlocal diffusion and free boundaries, which describes the evolution of an infectious agents with nonlocal diffusion and the infected humans without diffusion, where humans get infected by the agents, and infected humans in return contribute to the growth of the agents. The model can be viewed as a nonlocal version of the free boundary model studied by Ahn, Beak and Lin cite{ABL2016}, with its origin tracing back to Capasso et al. cite{CP1979, CM1981}. We prove that the problem has a unique solution defined for all $t>0$, and its long-time dynamical behaviour is governed by a spreading-vanishing dichotomy. Sharp criteria for spreading and vanishing are also obtained, which reveal significant differences from the local diffusion model in cite{ABL2016}. Depending on the choice of the kernel function in the nonlocal diffusion operator, it is expected that the nonlocal model here may have accelerated spreading, which would contrast sharply to the model of cite{ABL2016}, where the spreading has finite speed whenever spreading happens cite{ZLN2019}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا