Fine Structure of the Isovector Giant Dipole Resonance in $^{142-150}$Nd and $^{152}$Sm


Abstract in English

Background: Inelastic proton scattering at energies of a few hundred MeV and very-forward angles including $0^circ$ has been established as a tool to study electric-dipole strength distributions in nuclei. The present work reports a systematic investigation of the chain of stable even-mass Nd isotopes representing a transition from spherical to quadrupole-deformed nuclei. Purpose: Extraction of the equivalent photo-absorption cross sections and analysis of their fine structure in the energy region of the IsoVector Giant Dipole Resonance (IVGDR). Method: Proton inelastic scattering reactions of 200 MeV protons were measured at iThemba LABS in Cape Town, South Africa. The scattering products were momentum-analysed by the K600 magnetic spectrometer positioned at $theta_{mathrm{Lab}}=0^circ$. Using dispersion-matching techniques, energy resolutions of $Delta E approx 40 - 50$ keV were obtained. After subtraction of background and contributions from other multipoles, the spectra were converted to photo-absorption cross sections using the equivalent virtual-photon method. Results: Wavelet-analysis techniques are used to extract characteristic energy scales of the fine structure of the IVGDR from the experimental data. Comparisons with the Quasiparticle-Phonon Model (QPM) and Skyrme Separable Random Phase Approximation (SSRPA) predictions provide insight into the role of different giant resonance damping mechanisms. Conclusions: Fine structure is observed even for the most deformed nuclei studied. Fragmentation of the one particle-one hole ($1p1h$) strength seems to be the main source of fine structure in both spherical and deformed nuclei. Some impact of the spreading due to coupling of the two particle-two hole ($2p2h$) states to the $1p1h$ doorway states is seen in the spherical/transitional nuclei, where calculations beyond the $1p1h$ level are available.

Download