Do you want to publish a course? Click here

Collapse vs. blow up and global existence in the generalized Constantin-Lax-Majda equation

62   0   0.0 ( 0 )
 Added by Pavel M. Lushnikov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The question of finite time singularity formation vs. global existence for solutions to the generalized Constantin-Lax-Majda equation is studied, with particular emphasis on the influence of a parameter $a$ which controls the strength of advection. For solutions on the infinite domain we find a new critical value $a_c=0.6890665337007457ldots$ below which there is finite time singularity formation % if we write a=a_c=0.6890665337007457ldots here then ldots doesnt fit into the line that has a form of self-similar collapse, with the spatial extent of blow-up shrinking to zero. We find a new exact analytical collapsing solution at $a=1/2$ as well as prove the existence of a leading order complex singularity for general values of $a$ in the analytical continuation of the solution from the real spatial coordinate into the complex plane. This singularity controls the leading order behaviour of the collapsing solution. For $a_c<aleq1$, we find a blow-up solution in which the spatial extent of the blow-up region expands infinitely fast at the singularity time. For $a gtrsim 1.3$, we find that the solution exists globally with exponential-like growth of the solution amplitude in time. We also consider the case of periodic boundary conditions. We identify collapsing solutions for $a<a_c$ which are similar to the real line case. For $a_c<ale0.95$, we find new blow-up solutions which are neither expanding nor collapsing. For $ age 1,$ we identify a global existence of solutions.



rate research

Read More

48 - Zhen Lei , Jie Liu , Xiao Ren 2018
The well-known Constantin-Lax-Majda (CLM) equation, an important toy model of the 3D Euler equations without convection, can develop finite time singularities [5]. De Gregorio modified the CLM model by adding a convective term [6], which is known important for fluid dynamics [10,14]. Presented are two results on the De Gregorio model. The first one is the global well-posedness of such a model for general initial data with non-negative (or non-positive) vorticity which is based on a newly discovered conserved quantity. This verifies the numerical observations for such class of initial data. The second one is an exponential stability result of ground states, which is similar to the recent significant work of Jia, Steward and Sverak [11], with the zero mean constraint on the initial data being removable. The novelty of the method is the introduction of the new solution space $mathcal{H}_{DW}$ together with a new basis and an effective inner product of $mathcal{H}_{DW}$.
We study finite time blow-up and global existence of solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term. We show that for small enough initial data, if $rho(x)sim frac{1}{left(log|x|right)^{alpha}|x|^{2}}$ as $|x|to infty$, then solutions globally exist for any $p>1$. On the other hand, when $rho(x)simfrac{left(log|x|right)^{alpha}}{|x|^{2}}$ as $|x|to infty$, if the initial datum is small enough then one has global existence of the solution for any $p>m$, while if the initial datum is large enough then the blow-up of the solutions occurs for any $p>m$. Such results generalize those established in [27] and [28], where it is supposed that $rho(x)sim |x|^{-q}$ for $q>0$ as $|x|to infty$.
We study existence of global solutions and finite time blow-up of solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term $rho(x) u^p$ with $p>1$; this is a mathematical model of a thermal evolution of a heated plasma (see [25]). The density decays slowly at infinity, in the sense that $rho(x)lesssim |x|^{-q}$ as $|x|to +infty$ with $qin [0, 2).$ We show that for large enough initial data, solutions blow-up in finite time for any $p>1$. On the other hand, if the initial datum is small enough and $p>bar p$, for a suitable $bar p$ depending on $rho, m, N$, then global solutions exist. In addition, if $p<underline p$, for a suitable $underline pleq bar p$ depending on $rho, m, N$, then the solution blows-up in finite time for any nontrivial initial datum; we need the extra hypotehsis that $qin [0, epsilon)$ for $epsilon>0$ small enough, when $mleq p<underline p$. Observe that $underline p=bar p$, if $rho(x)$ is a multiple of $|x|^{-q}$ for $|x|$ large enough. Such results are in agreement with those established in [41], where $rho(x)equiv 1$. The case of fast decaying density at infinity, i.e. $qgeq 2$, is examined in [31].
We are concerned with nonnegative solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term $u^p$ with $p>1$. The density decays {it fast} at infinity, in the sense that $rho(x)sim |x|^{-q}$ as $|x|to +infty$ with $qge 2.$ In the case when $q=2$, if $p$ is bigger than $m$, we show that, for large enough initial data, solutions blow-up in finite time and for small initial datum, solutions globally exist. On the other hand, in the case when $q>2$, we show that existence of global in time solutions always prevails. The case of {it slowly} decaying density at infinity, i.e. $qin [0,2)$, is examined in [41].
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schr{o}dinger (NLS) equation. In order to model such gas we use N-soliton solutions (N-SS) with $Nsim 100$, which we generate with specific implementation of the dressing method combined with 100-digits arithmetics. We examine the major statistical characteristics, in particular the kinetic and potential energies, the kurtosis, the wave-action spectrum and the probability density function (PDF) of wave intensity. We show that in the case of small soliton density the kinetic and potential energies, as well as the kurtosis, are very well described by the analytical relations derived without taking into account soliton interactions. With increasing soliton density and velocities, soliton interactions enhance, and we observe increasing deviations from these relations leading to increased absolute values for all of these three characteristics. The wave-action spectrum is smooth, decays close to exponentially at large wavenumbers and widens with increasing soliton density and velocities. The PDF of wave intensity deviates from the exponential (Rayleigh) PDF drastically for rarefied soliton gas, transforming much closer to it at densities corresponding to essential interaction between the solitons. Rogue waves emerging in soliton gas are multi-soliton collisions, and yet some of them have spatial profiles very similar to those of the Peregrine solutions of different orders. We present example of three-soliton collision, for which even the temporal behavior of the maximal amplitude is very well approximated by the Peregrine solution of the second order.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا