No Arabic abstract
Search engines often follow a two-phase paradigm where in the first stage (the retrieval stage) an initial set of documents is retrieved and in the second stage (the re-ranking stage) the documents are re-ranked to obtain the final result list. While deep neural networks were shown to improve the performance of the re-ranking stage in previous works, there is little literature about using deep neural networks to improve the retrieval stage. In this paper, we study the merits of combining deep neural network models and lexical models for the retrieval stage. A hybrid approach, which leverages both semantic (deep neural network-based) and lexical (keyword matching-based) retrieval models, is proposed. We perform an empirical study, using a publicly available TREC collection, which demonstrates the effectiveness of our approach and sheds light on the different characteristics of the semantic approach, the lexical approach, and their combination.
In this paper we propose a new document classification method, bridging discrepancies (so-called semantic gap) between the training set and the application sets of textual data. We demonstrate its superiority over classical text classification approaches, including traditional classifier ensembles. The method consists in combining a document categorization technique with a single classifier or a classifier ensemble (SEMCOM algorithm - Committee with Semantic Categorizer).
This paper presents CLEAR, a retrieval model that seeks to complement classical lexical exact-match models such as BM25 with semantic matching signals from a neural embedding matching model. CLEAR explicitly trains the neural embedding to encode language structures and semantics that lexical retrieval fails to capture with a novel residual-based embedding learning method. Empirical evaluations demonstrate the advantages of CLEAR over state-of-the-art retrieval models, and that it can substantially improve the end-to-end accuracy and efficiency of reranking pipelines.
Search engine has become a fundamental component in various web and mobile applications. Retrieving relevant documents from the massive datasets is challenging for a search engine system, especially when faced with verbose or tail queries. In this paper, we explore a vector space search framework for document retrieval. Specifically, we trained a deep semantic matching model so that each query and document can be encoded as a low dimensional embedding. Our model was trained based on BERT architecture. We deployed a fast k-nearest-neighbor index service for online serving. Both offline and online metrics demonstrate that our method improved retrieval performance and search quality considerably, particularly for tail
Domain specific information retrieval process has been a prominent and ongoing research in the field of natural language processing. Many researchers have incorporated different techniques to overcome the technical and domain specificity and provide a mature model for various domains of interest. The main bottleneck in these studies is the heavy coupling of domain experts, that makes the entire process to be time consuming and cumbersome. In this study, we have developed three novel models which are compared against a golden standard generated via the on line repositories provided, specifically for the legal domain. The three different models incorporated vector space representations of the legal domain, where document vector generation was done in two different mechanisms and as an ensemble of the above two. This study contains the research being carried out in the process of representing legal case documents into different vector spaces, whilst incorporating semantic word measures and natural language processing techniques. The ensemble model built in this study, shows a significantly higher accuracy level, which indeed proves the need for incorporation of domain specific semantic similarity measures into the information retrieval process. This study also shows, the impact of varying distribution of the word similarity measures, against varying document vector dimensions, which can lead to improvements in the process of legal information retrieval.
In this paper, we study jointly query reformulation and document relevance estimation, the two essential aspects of information retrieval (IR). Their interactions are modelled as a two-player strategic game: one player, a query formulator, taking actions to produce the optimal query, is expected to maximize its own utility with respect to the relevance estimation of documents produced by the other player, a retrieval modeler; simultaneously, the retrieval modeler, taking actions to produce the document relevance scores, needs to optimize its likelihood from the training data with respect to the refined query produced by the query formulator. Their equilibrium or equilibria will be reached when both are the best responses to each other. We derive our equilibrium theory of IR using normal-form representations: when a standard relevance feedback algorithm is coupled with a retrieval model, they would share the same objective function and thus form a partnership game; by contrast, pseudo relevance feedback pursues a rather different objective than that of retrieval models, therefore the interaction between them would lead to a general-sum game (though implicitly collaborative). Our game-theoretical analyses not only yield useful insights into the two major aspects of IR, but also offer new practical algorithms for achieving the equilibrium state of retrieval which have been shown to bring consistent performance improvements in both text retrieval and item recommendation.