No Arabic abstract
Context. The frequencies, lifetimes, and eigenfunctions of solar acoustic waves are affected by turbulent convection, which is random in space and in time. Since the correlation time of solar granulation and the periods of acoustic waves ($sim$5 min) are similar, the medium in which the waves propagate cannot a priori be assumed to be time independent. Aims. We compare various effective-medium solutions with numerical solutions in order to identify the approximations that can be used in helioseismology. For the sake of simplicity, the medium is one dimensional. Methods. We consider the Keller approximation, the second-order Born approximation, and spatial homogenization to obtain theoretical values for the effective wave speed and attenuation (averaged over the realizations of the medium). Numerically, we computed the first and second statistical moments of the wave field over many thousands of realizations of the medium (finite-amplitude sound-speed perturbations are limited to a 30 Mm band and have a zero mean). Results. The effective wave speed is reduced for both the theories and the simulations. The attenuation of the coherent wave field and the wave speed are best described by the Keller theory. The numerical simulations reveal the presence of coda waves, trailing the coherent wave packet. These late arrival waves are due to multiple scattering and are easily seen in the second moment of the wave field. Conclusions. We find that the effective wave speed can be calculated, numerically and theoretically, using a single snapshot of the random medium (frozen medium); however, the attenuation is underestimated in the frozen medium compared to the time-dependent medium. Multiple scattering cannot be ignored when modeling acoustic wave propagation through solar granulation.
We investigate the Interface Region Imaging Spectrograph (IRIS) observations of the quiet-Sun (QS) to understand the propagation of acoustic waves in transition region (TR) from photosphere. We selected a few IRIS spectral lines, which include the photospheric (Mn~{sc i} 2801.25~{AA}), chromospheric (Mg~{sc ii} k 2796.35~{AA}) and TR (C~{sc ii} 1334.53~{AA}), to investigate the acoustic wave propagation.The wavelet cross-spectrum reveals significant coherence (about 70% locations) between photosphere and chromosphere. Few minutes oscillations (i.e., period range from 1.6 to 4.0 minutes) successfully propagate into chromosphere from photosphere, which is confirmed by dominance of positive phase lags. However, in higher period regime (i.e., greater than $approx$ 4.5 minutes), the downward propagation dominates is evident by negative phase lags. The broad spectrum of waves (i.e., 2.5-6.0 minutes) propagates freely upwards from chromosphere to TR. We find that only about 45% locations (out of 70%) show correlation between chromosphere and TR. Our results indicate that roots of 3 minutes oscillations observed within chromosphere/TR are located in photosphere. Observations also demonstrate that 5 minute oscillations propagate downward from chromosphere. textbf{However, some locations within QS also show successful propagation of 5 minute oscillations as revealed by positive phase lags, which might be the result of magnetic field}. In addition, our results clearly show that a significant power, within period ranging from 2.5 to 6.0 minutes, of solar chromosphere is freely transmitted into TR triggering atmospheric oscillations. Theoretical implications of our observational results are discussed.
There has been tremendous progress in the degree of realism of three-dimensional radiation magneto-hydrodynamic simulations of the solar atmosphere in the past decades. Four of the most frequently used numerical codes are Bifrost, CO5BOLD, MANCHA3D, and MURaM. Here we test and compare the wave propagation characteristics in model runs from these four codes by measuring the dispersion relation of acoustic-gravity waves at various heights. We find considerable differences between the various models. The height dependence of wave power, in particular of high-frequency waves, varies by up to two orders of magnitude between the models, and the phase difference spectra of several models show unexpected features, including $pm180^circ$ phase jumps.
Waves and shocks traveling through the solar chromospheric plasma are influenced by its partial ionization and weak collisional coupling, and may become susceptible to multi-fluid effects, similar to interstellar shock waves. In this study, we consider fast magneto-acoustic shock wave formation and propagation in a stratified medium, that is permeated by a horizontal magnetic field, with properties similar to that of the solar chromosphere. The evolution of plasma and neutrals is modeled using a two-fluid code that evolves a set of coupled equations for two separate fluids. We observed that waves in neutrals and plasma, initially coupled at the upper photosphere, become uncoupled at higher heights in the chromosphere. This decoupling can be a consequence of either the characteristic spatial scale at the shock front, that becomes similar to the collisional scale, or the change in the relation between the wave frequency, ion cyclotron frequency, and the collisional frequency with height. The decoupling height is a sensitive function of the wave frequency, wave amplitude, and the magnetic field strength. We observed that decoupling causes damping of waves and an increase in the background temperature due to the frictional heating. The comparison between analytical and numerical results allows us to separate the role of the nonlinear effects from the linear ones on the decoupling and damping of waves.
Five-minutes oscillations is one of the basic properties of solar convection. Observations show mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point of view of individual events, by using realistic 3D radiative hydrodynamic simulation of the quiet Sun. The results show that the excitation events are related to dynamics vortex tubes (or swirls) in the intergranular lanes. These whirlpool-like flows are characterized by very strong horizontal velocities (7 - 11 km/s) and downflows (~ 7 km/s), and are accompanied by strong decreases of the temperature, density and pressure at the surface and in a ~ 0.5-1 Mm deep layer below the surface. High-speed whirlpool flows can attract and capture other vortices. According to our simulation results, the processes of the vortex interaction, such as vortex annihilation, can cause the excitation of acoustic waves.
The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis---that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame---is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfven waves is not.