Do you want to publish a course? Click here

HUMAN: Hierarchical Universal Modular ANnotator

158   0   0.0 ( 0 )
 Added by Moritz Wolf
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A lot of real-world phenomena are complex and cannot be captured by single task annotations. This causes a need for subsequent annotations, with interdependent questions and answers describing the nature of the subject at hand. Even in the case a phenomenon is easily captured by a single task, the high specialisation of most annotation tools can result in having to switch to another tool if the task only slightly changes. We introduce HUMAN, a novel web-based annotation tool that addresses the above problems by a) covering a variety of annotation tasks on both textual and image data, and b) the usage of an internal deterministic state machine, allowing the researcher to chain different annotation tasks in an interdependent manner. Further, the modular nature of the tool makes it easy to define new annotation tasks and integrate machine learning algorithms e.g., for active learning. HUMAN comes with an easy-to-use graphical user interface that simplifies the annotation task and management.



rate research

Read More

Crowdsourcing has been the prevalent paradigm for creating natural language understanding datasets in recent years. A common crowdsourcing practice is to recruit a small number of high-quality workers, and have them massively generate examples. Having only a few workers generate the majority of examples raises concerns about data diversity, especially when workers freely generate sentences. In this paper, we perform a series of experiments showing these concerns are evident in three recent NLP datasets. We show that model performance improves when training with annotator identifiers as features, and that models are able to recognize the most productive annotators. Moreover, we show that often models do not generalize well to examples from annotators that did not contribute to the training set. Our findings suggest that annotator bias should be monitored during dataset creation, and that test set annotators should be disjoint from training set annotators.
Current dialogue summarization systems usually encode the text with a number of general semantic features (e.g., keywords and topics) to gain more powerful dialogue modeling capabilities. However, these features are obtained via open-domain toolkits that are dialog-agnostic or heavily relied on human annotations. In this paper, we show how DialoGPT, a pre-trained model for conversational response generation, can be developed as an unsupervised dialogue annotator, which takes advantage of dialogue background knowledge encoded in DialoGPT. We apply DialoGPT to label three types of features on two dialogue summarization datasets, SAMSum and AMI, and employ pre-trained and non pre-trained models as our summarizes. Experimental results show that our proposed method can obtain remarkable improvements on both datasets and achieves new state-of-the-art performance on the SAMSum dataset.
Recently, neural networks have shown promising results on Document-level Aspect Sentiment Classification (DASC). However, these approaches often offer little transparency w.r.t. their inner working mechanisms and lack interpretability. In this paper, to simulating the steps of analyzing aspect sentiment in a document by human beings, we propose a new Hierarchical Reinforcement Learning (HRL) approach to DASC. This approach incorporates clause selection and word selection strategies to tackle the data noise problem in the task of DASC. First, a high-level policy is proposed to select aspect-relevant clauses and discard noisy clauses. Then, a low-level policy is proposed to select sentiment-relevant words and discard noisy words inside the selected clauses. Finally, a sentiment rating predictor is designed to provide reward signals to guide both clause and word selection. Experimental results demonstrate the impressive effectiveness of the proposed approach to DASC over the state-of-the-art baselines.
122 - Shreya P. Kumar , Ish Dhand 2020
We present modular and optimal architectures for implementing arbitrary discrete unitary transformations on light. These architectures are based on systematically combining smaller M-mode linear optical interferometers together to implement a larger N-mode transformation. Thus this work enables the implementation of large linear optical transformations using smaller modules that act on the spatial or the internal degrees of freedom of light such as polarization, time or orbital angular momentum. The architectures lead to a rectangular gate structure, which is optimal in the sense that realizing arbitrary transformations on these architectures needs a minimal number of optical elements and minimal circuit depth. Moreover, the rectangular structure ensures that each the different optical modes incur balanced optical losses, so the architectures promise substantially enhanced process fidelities as compared to existing schemes.
We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are pivots, where a hexagonal module rotates around a vertex shared with another module. Following prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing power: restricted and monkey moves. When we allow both moves, we present the first universal reconfiguration algorithm, which transforms between any two connected configurations using $O(n^3)$ monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid examples that do not have a single pivoting move preserving connectivity. On the other hand, if we only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete. Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the reduction framework of Demaine et al. [FUN18] that we consider of independent interest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا