Do you want to publish a course? Click here

Encoded Prior Sliced Wasserstein AutoEncoder for learning latent manifold representations

190   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

While variational autoencoders have been successful generative models for a variety of tasks, the use of conventional Gaussian or Gaussian mixture priors are limited in their ability to capture topological or geometric properties of data in the latent representation. In this work, we introduce an Encoded Prior Sliced Wasserstein AutoEncoder (EPSWAE) wherein an additional prior-encoder network learns an unconstrained prior to match the encoded data manifold. The autoencoder and prior-encoder networks are iteratively trained using the Sliced Wasserstein Distance (SWD), which efficiently measures the distance between two $textit{arbitrary}$ sampleable distributions without being constrained to a specific form as in the KL divergence, and without requiring expensive adversarial training. Additionally, we enhance the conventional SWD by introducing a nonlinear shearing, i.e., averaging over random $textit{nonlinear}$ transformations, to better capture differences between two distributions. The prior is further encouraged to encode the data manifold by use of a structural consistency term that encourages isometry between feature space and latent space. Lastly, interpolation along $textit{geodesics}$ on the latent space representation of the data manifold generates samples that lie on the manifold and hence is advantageous compared with standard Euclidean interpolation. To this end, we introduce a graph-based algorithm for identifying network-geodesics in latent space from samples of the prior that maximize the density of samples along the path while minimizing total energy. We apply our framework to 3D-spiral, MNIST, and CelebA datasets, and show that its latent representations and interpolations are comparable to the state of the art on equivalent architectures.



rate research

Read More

In this paper we study generative modeling via autoencoders while using the elegant geometric properties of the optimal transport (OT) problem and the Wasserstein distances. We introduce Sliced-Wasserstein Autoencoders (SWAE), which are generative models that enable one to shape the distribution of the latent space into any samplable probability distribution without the need for training an adversarial network or defining a closed-form for the distribution. In short, we regularize the autoencoder loss with the sliced-Wasserstein distance between the distribution of the encoded training samples and a predefined samplable distribution. We show that the proposed formulation has an efficient numerical solution that provides similar capabilities to Wasserstein Autoencoders (WAE) and Variational Autoencoders (VAE), while benefiting from an embarrassingly simple implementation.
Gaussian mixture models (GMM) are powerful parametric tools with many applications in machine learning and computer vision. Expectation maximization (EM) is the most popular algorithm for estimating the GMM parameters. However, EM guarantees only convergence to a stationary point of the log-likelihood function, which could be arbitrarily worse than the optimal solution. Inspired by the relationship between the negative log-likelihood function and the Kullback-Leibler (KL) divergence, we propose an alternative formulation for estimating the GMM parameters using the sliced Wasserstein distance, which gives rise to a new algorithm. Specifically, we propose minimizing the sliced-Wasserstein distance between the mixture model and the data distribution with respect to the GMM parameters. In contrast to the KL-divergence, the energy landscape for the sliced-Wasserstein distance is more well-behaved and therefore more suitable for a stochastic gradient descent scheme to obtain the optimal GMM parameters. We show that our formulation results in parameter estimates that are more robust to random initializations and demonstrate that it can estimate high-dimensional data distributions more faithfully than the EM algorithm.
We address the problem of compressed sensing using a deep generative prior model and consider both linear and learned nonlinear sensing mechanisms, where the nonlinear one involves either a fully connected neural network or a convolutional neural network. Recently, it has been argued that the distribution of natural images do not lie in a single manifold but rather lie in a union of several submanifolds. We propose a sparsity-driven latent space sampling (SDLSS) framework and develop a proximal meta-learning (PML) algorithm to enforce sparsity in the latent space. SDLSS allows the range-space of the generator to be considered as a union-of-submanifolds. We also derive the sample complexity bounds within the SDLSS framework for the linear measurement model. The results demonstrate that for a higher degree of compression, the SDLSS method is more efficient than the state-of-the-art method. We first consider a comparison between linear and nonlinear sensing mechanisms on Fashion-MNIST dataset and show that the learned nonlinear version is superior to the linear one. Subsequent comparisons with the deep compressive sensing (DCS) framework proposed in the literature are reported. We also consider the effect of the dimension of the latent space and the sparsity factor in validating the SDLSS framework. Performance quantification is carried out by employing three objective metrics: peak signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), and reconstruction error (RE).
The Wasserstein distance and its variations, e.g., the sliced-Wasserstein (SW) distance, have recently drawn attention from the machine learning community. The SW distance, specifically, was shown to have similar properties to the Wasserstein distance, while being much simpler to compute, and is therefore used in various applications including generative modeling and general supervised/unsupervised learning. In this paper, we first clarify the mathematical connection between the SW distance and the Radon transform. We then utilize the generalized Radon transform to define a new family of distances for probability measures, which we call generalized sliced-Wasserstein (GSW) distances. We also show that, similar to the SW distance, the GSW distance can be extended to a maximum GSW (max-GSW) distance. We then provide the conditions under which GSW and max-GSW distances are indeed distances. Finally, we compare the numerical performance of the proposed distances on several generative modeling tasks, including SW flows and SW auto-encoders.
144 - Soheil Kolouri , Yang Zou , 2015
Optimal transport distances, otherwise known as Wasserstein distances, have recently drawn ample attention in computer vision and machine learning as a powerful discrepancy measure for probability distributions. The recent developments on alternative formulations of the optimal transport have allowed for faster solutions to the problem and has revamped its practical applications in machine learning. In this paper, we exploit the widely used kernel methods and provide a family of provably positive definite kernels based on the Sliced Wasserstein distance and demonstrate the benefits of these kernels in a variety of learning tasks. Our work provides a new perspective on the application of optimal transport flavored distances through kernel methods in machine learning tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا