Do you want to publish a course? Click here

Active Learning for Bayesian 3D Hand Pose Estimation

206   0   0.0 ( 0 )
 Added by Razvan Caramalau
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a Bayesian approximation to a deep learning architecture for 3D hand pose estimation. Through this framework, we explore and analyse the two types of uncertainties that are influenced either by data or by the learning capability. Furthermore, we draw comparisons against the standard estimator over three popular benchmarks. The first contribution lies in outperforming the baseline while in the second part we address the active learning application. We also show that with a newly proposed acquisition function, our Bayesian 3D hand pose estimator obtains lowest errors with the least amount of data. The underlying code is publicly available at https://github.com/razvancaramalau/al_bhpe.



rate research

Read More

In this paper, we propose an adaptive weighting regression (AWR) method to leverage the advantages of both detection-based and regression-based methods. Hand joint coordinates are estimated as discrete integration of all pixels in dense representation, guided by adaptive weight maps. This learnable aggregation process introduces both dense and joint supervision that allows end-to-end training and brings adaptability to weight maps, making the network more accurate and robust. Comprehensive exploration experiments are conducted to validate the effectiveness and generality of AWR under various experimental settings, especially its usefulness for different types of dense representation and input modality. Our method outperforms other state-of-the-art methods on four publicly available datasets, including NYU, ICVL, MSRA and HANDS 2017 dataset.
3D hand-object pose estimation is an important issue to understand the interaction between human and environment. Current hand-object pose estimation methods require detailed 3D labels, which are expensive and labor-intensive. To tackle the problem of data collection, we propose a semi-supervised 3D hand-object pose estimation method with two key techniques: pose dictionary learning and an object-oriented coordinate system. The proposed pose dictionary learning module can distinguish infeasible poses by reconstruction error, enabling unlabeled data to provide supervision signals. The proposed object-oriented coordinate system can make 3D estimations equivariant to the camera perspective. Experiments are conducted on FPHA and HO-3D datasets. Our method reduces estimation error by 19.5% / 24.9% for hands/objects compared to straightforward use of labeled data on FPHA and outperforms several baseline methods. Extensive experiments also validate the robustness of the proposed method.
This paper proposes a novel concept to directly match feature descriptors extracted from 2D images with feature descriptors extracted from 3D point clouds. We use this concept to directly localize images in a 3D point cloud. We generate a dataset of matching 2D and 3D points and their corresponding feature descriptors, which is used to learn a Descriptor-Matcher classifier. To localize the pose of an image at test time, we extract keypoints and feature descriptors from the query image. The trained Descriptor-Matcher is then used to match the features from the image and the point cloud. The locations of the matched features are used in a robust pose estimation algorithm to predict the location and orientation of the query image. We carried out an extensive evaluation of the proposed method for indoor and outdoor scenarios and with different types of point clouds to verify the feasibility of our approach. Experimental results demonstrate that direct matching of feature descriptors from images and point clouds is not only a viable idea but can also be reliably used to estimate the 6-DOF poses of query cameras in any type of 3D point cloud in an unconstrained manner with high precision.
Encouraged by the success of contrastive learning on image classification tasks, we propose a new self-supervised method for the structured regression task of 3D hand pose estimation. Contrastive learning makes use of unlabeled data for the purpose of representation learning via a loss formulation that encourages the learned feature representations to be invariant under any image transformation. For 3D hand pose estimation, it too is desirable to have invariance to appearance transformation such as color jitter. However, the task requires equivariance under affine transformations, such as rotation and translation. To address this issue, we propose an equivariant contrastive objective and demonstrate its effectiveness in the context of 3D hand pose estimation. We experimentally investigate the impact of invariant and equivariant contrastive objectives and show that learning equivariant features leads to better representations for the task of 3D hand pose estimation. Furthermore, we show that standard ResNets with sufficient depth, trained on additional unlabeled data, attain improvements of up to 14.5% in PA-EPE on FreiHAND and thus achieves state-of-the-art performance without any task specific, specialized architectures. Code and models are available at https://ait.ethz.ch/projects/2021/PeCLR/
Estimating 3D hand pose directly from RGB imagesis challenging but has gained steady progress recently bytraining deep models with annotated 3D poses. Howeverannotating 3D poses is difficult and as such only a few 3Dhand pose datasets are available, all with limited samplesizes. In this study, we propose a new framework of training3D pose estimation models from RGB images without usingexplicit 3D annotations, i.e., trained with only 2D informa-tion. Our framework is motivated by two observations: 1)Videos provide richer information for estimating 3D posesas opposed to static images; 2) Estimated 3D poses oughtto be consistent whether the videos are viewed in the for-ward order or reverse order. We leverage these two obser-vations to develop a self-supervised learning model calledtemporal-aware self-supervised network (TASSN). By en-forcing temporal consistency constraints, TASSN learns 3Dhand poses and meshes from videos with only 2D keypointposition annotations. Experiments show that our modelachieves surprisingly good results, with 3D estimation ac-curacy on par with the state-of-the-art models trained with3D annotations, highlighting the benefit of the temporalconsistency in constraining 3D prediction models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا