Do you want to publish a course? Click here

Single-objective selective-volume illumination microscopy enables high-contrast light-field imaging

78   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The performance of light-field microscopy is improved by selectively illuminating the relevant subvolume of the specimen with a second objective lens [1-3]. Here we advance this approach to a single-objective geometry, using an oblique one-photon illumination path or two-photon illumination to accomplish selective-volume excitation. The elimination of the second orthogonally oriented objective to selectively excite the volume of interest simplifies specimen mounting; yet, this single-objective approach still reduces out-of-volume background, resulting in improvements in image contrast, effective resolution, and volume reconstruction quality. We validate our new approach through imaging live developing zebrafish, demonstrating the technologys ability to capture imaging data from large volumes synchronously with high contrast, while remaining compatible with standard microscope sample mounting.



rate research

Read More

On-invasive optical imaging techniques are essential diagnostic tools in many fields. Although various recent methods have been proposed to utilize and control light in multiple scattering media, non-invasive optical imaging through and inside scattering layers across a large field of view remains elusive due to the physical limits set by the optical memory effect, especially without wavefront shaping techniques. Here, we demonstrate an approach that enables non-invasive fluorescence imaging behind scattering layers with field-of-views extending well beyond the optical memory effect. The method consists in demixing the speckle patterns emitted by a fluorescent object under variable unknown random illumination, using matrix factorization and a novel fingerprint-based reconstruction. Experimental validation shows the efficiency and robustness of the method with various fluorescent samples, covering a field of view up to three times the optical memory effect range. Our non-invasive imaging technique is simple, neither requires a spatial light modulator nor a guide star, and can be generalized to a wide range of incoherent contrast mechanisms and illumination schemes.
Under weak illumination, tracking and imaging moving object turns out to be hard. By spatially collecting the signal, single pixel imaging schemes promise the capability of image reconstruction from low photon flux. However, due to the requirement on large number of samplings, how to clearly image moving objects is an essential problem for such schemes. Here we present a principle of single pixel tracking and imaging method. Velocity vector of the object is obtained from temporal correlation of the bucket signals in a typical computational ghost imaging system. Then the illumination beam is steered accordingly. Taking the velocity into account, both trajectory and clear image of the object are achieved during its evolution. Since tracking is achieved with bucket signals independently, this scheme is valid for capturing moving object as fast as its displacement within the interval of every sampling keeps larger than the resolution of the optical system. Experimentally, our method works well with the average number of detected photons down to 1.88 photons/speckle.
Video-rate super-resolution imaging through biological tissue can visualize and track biomolecule interplays and transportations inside cellular organisms. Structured illumination microscopy allows for wide-field super resolution observation of biological samples but is limited by the strong absorption and scattering of light by biological tissues, which degrades its imaging resolution. Here we report a photon upconversion scheme using lanthanide-doped nanoparticles for wide-field super-resolution imaging through the biological transparent window, featured by near-infrared and low-irradiance nonlinear structured illumination. We demonstrate that the 976 nm excitation and 800 nm up-converted emission can mitigate the aberration. We found that the nonlinear response of upconversion emissions from single nanoparticles can effectively generate the required high spatial frequency components in Fourier domain. These strategies lead to a new modality in microscopy with a resolution of 130 nm, 1/7th of the excitation wavelength, and a frame rate of 1 fps.
We present a novel diffractive imaging method that harnesses a low-resolution real-space image to guide the phase retrieval. A computational algorithm is developed to utilize such prior knowledge as a real-space constraint in the iterative phase retrieval procedure. Numerical simulations and proof-of-concept experiments are carried out, demonstrating our methods capability of reconstructing high-resolution details that are otherwise inaccessible with traditional phasing algorithms. With the present method, we formulate a conceptual design for the coherent imaging experiments at a next-generation X-ray light source.
Interferometric scattering microscopy has been a very promising technology for highly sensitive label-free imaging of a broad spectrum of biological nanoparticles from proteins to viruses in a high-throughput manner. Although it can reveal the specimens size and shape information, the chemical composition is inaccessible in interferometric measurements. Infrared spectroscopic imaging provides chemical specificity based on inherent chemical bond vibrations of specimens but lacks the ability to image and resolve individual nanoparticles due to long infrared wavelengths. Here, we describe a bond-selective interferometric scattering microscope where the mid-infrared induced photothermal signal is detected by a visible beam in a wide-field common-path interferometry configuration. A thin film layered substrate is utilized to reduce the reflected light and provide a reference field for the interferometric detection of the weakly scattered field. A pulsed mid-IR laser is employed to modulate the interferometric signal. Subsequent demodulation via a virtual lock-in camera offers simultaneous chemical information about tens of micro- or nano-particles. The chemical contrast arises from a minute change in the particles scattered field in consequence of the vibrational absorption at the target molecule. We characterize the system with sub-wavelength polymer beads and highlight biological applications by chemically imaging several microorganisms including Staphylococcus aureus, Escherichia coli, and Candida albicans. A theoretical framework is established to extend bond-selective interferometric scattering microscopy to a broad range of biological micro- and nano-particles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا