Do you want to publish a course? Click here

The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations

99   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of $(25~h^{-1}{rm Mpc})^3$ volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run with the AREPO and GIZMO codes, employing the same baryonic subgrid physics as the IllustrisTNG and SIMBA simulations, and 2,049 N-body simulations. The goal of the CAMELS project is to provide theory predictions for different observables as a function of cosmology and astrophysics, and it is the largest suite of cosmological (magneto-)hydrodynamic simulations designed to train machine learning algorithms. CAMELS contains thousands of different cosmological and astrophysical models by way of varying $Omega_m$, $sigma_8$, and four parameters controlling stellar and AGN feedback, following the evolution of more than 100 billion particles and fluid elements over a combined volume of $(400~h^{-1}{rm Mpc})^3$. We describe the simulations in detail and characterize the large range of conditions represented in terms of the matter power spectrum, cosmic star formation rate density, galaxy stellar mass function, halo baryon fractions, and several galaxy scaling relations. We show that the IllustrisTNG and SIMBA suites produce roughly similar distributions of galaxy properties over the full parameter space but significantly different halo baryon fractions and baryonic effects on the matter power spectrum. This emphasizes the need for marginalizing over baryonic effects to extract the maximum amount of information from cosmological surveys. We illustrate the unique potential of CAMELS using several machine learning applications, including non-linear interpolation, parameter estimation, symbolic regression, data generation with Generative Adversarial Networks (GANs), dimensionality reduction, and anomaly detection.



rate research

Read More

121 - Sultan Hassan 2019
Future Square Kilometre Array (SKA) surveys are expected to generate huge datasets of 21cm maps on cosmological scales from the Epoch of Reionization (EoR). We assess the viability of exploiting machine learning techniques, namely, convolutional neural networks (CNN), to simultaneously estimate the astrophysical and cosmological parameters from 21cm maps from semi-numerical simulations. We further convert the simulated 21cm maps into SKA-like mock maps using the detailed SKA antennae distribution, thermal noise and a recipe for foreground cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that are both efficiently able to extract simultaneously three astrophysical parameters, namely the photon escape fraction (f$_{rm esc}$), the ionizing emissivity power dependence on halo mass ($C_{rm ion}$) and the ionizing emissivity redshift evolution index ($D_{rm ion}$), and three cosmological parameters, namely the matter density parameter ($Omega_{m}$), the dimensionless Hubble constant ($h$), and the matter fluctuation amplitude ($sigma_{8}$), from 21cm maps at several redshifts. With the presence of noise from SKA, our designed CNNs are still able to recover these astrophysical and cosmological parameters with great accuracy ($R^{2} > 92%$), improving to $R^{2} > 99%$ towards low redshift and low neutral fraction values. Our results show that future 21cm observations can play a key role to break degeneracy between models and tightly constrain the astrophysical and cosmological parameters, using only few frequency channels.
We present the curation and verification of a new combined optical and near infrared dataset for cosmology and astrophysics, derived from the combination of $ugri$-band imaging from the Kilo Degree Survey (KiDS) and $ZY!J!H!K_{rm s}$-band imaging from the VISTA Kilo degree Infrared Galaxy (VIKING) survey. This dataset is unrivaled in cosmological imaging surveys due to its combination of area ($458$ deg$^2$ before masking), depth ($rle25$), and wavelength coverage ($ugriZY!J!H!K_{rm s}$). The combination of survey depth, area, and (most importantly) wavelength coverage allows significant reductions in systematic uncertainties (i.e. reductions of between 10 and 60% in bias, outlier rate, and scatter) in photometric-to-spectroscopic redshift comparisons, compared to the optical-only case at photo-$z$ above $0.7$. The complementarity between our optical and NIR surveys means that over $80%$ of our sources, across all photo-$z$, have significant detections (i.e. not upper limits) in our $8$ reddest bands. We derive photometry, photo-$z$, and stellar masses for all sources in the survey, and verify these data products against existing spectroscopic galaxy samples. We demonstrate the fidelity of our higher-level data products by constructing the survey stellar mass functions in 8 volume-complete redshift bins. We find that these photometrically derived mass functions provide excellent agreement with previous mass evolution studies derived using spectroscopic surveys. The primary data products presented in this paper are publicly available at http://kids.strw.leidenuniv.nl/.
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molecular spectral lines from galaxies and the intergalactic medium over a broad range of frequencies, using instruments with aperture requirements that are greatly relaxed relative to surveys for single objects. A coordinated, comprehensive, multi-line intensity-mapping experimental effort can efficiently probe over 80% of the volume of the observable Universe - a feat beyond the reach of other methods. Line-intensity mapping will uniquely address a wide array of pressing mysteries in galaxy evolution, cosmology, and fundamental physics. Among them are the cosmic history of star formation and galaxy evolution, the compositions of the interstellar and intergalactic media, the physical processes that take place during the epoch of reionization, cosmological inflation, the validity of Einsteins gravity theory on the largest scales, the nature of dark energy and the origin of dark matter.
We present a machine-learning photometric redshift analysis of the Kilo-Degree Survey Data Release 3, using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-zs of quality comparable to, if not better than, those from the BPZ code, at least up to zphot<0.9 and r<23.5. At the bright end of r<20, where very complete spectroscopic data overlapping with KiDS are available, the performance of the ML photo-zs clearly surpasses that of BPZ, currently the primary photo-z method for KiDS. Using the Galaxy And Mass Assembly (GAMA) spectroscopic survey as calibration, we furthermore study how photo-zs improve for bright sources when photometric parameters additional to magnitudes are included in the photo-z derivation, as well as when VIKING and WISE infrared bands are added. While the fiducial four-band ugri setup gives a photo-z bias $delta z=-2e-4$ and scatter $sigma_z<0.022$ at mean z = 0.23, combining magnitudes, colours, and galaxy sizes reduces the scatter by ~7% and the bias by an order of magnitude. Once the ugri and IR magnitudes are joined into 12-band photometry spanning up to 12 $mu$, the scatter decreases by more than 10% over the fiducial case. Finally, using the 12 bands together with optical colours and linear sizes gives $delta z<4e-5$ and $sigma_z<0.019$. This paper also serves as a reference for two public photo-z catalogues accompanying KiDS DR3, both obtained using the ANNz2 code. The first one, of general purpose, includes all the 39 million KiDS sources with four-band ugri measurements in DR3. The second dataset, optimized for low-redshift studies such as galaxy-galaxy lensing, is limited to r<20, and provides photo-zs of much better quality than in the full-depth case thanks to incorporating optical magnitudes, colours, and sizes in the GAMA-calibrated photo-z derivation.
This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name eLISA) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISAs measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESAs Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا