Do you want to publish a course? Click here

High magnetic field spin-valley-split Shubnikov-de Haas oscillations in a WSe$_2$ monolayer

321   0   0.0 ( 0 )
 Added by Mathieu Pierre
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Shubnikov-de Haas oscillations in a p-type WSe$_2$ monolayer under very high magnetic field. The oscillation pattern is complex due to a large spin and valley splitting, in the non-fully-resolved Landau level regime. Our experimental data can be reproduced with a model in which the main parameter is the ratio between the Zeeman energy and the cyclotron energy. The model takes into account the Landau levels from both valleys with the same Gaussian broadening, which allows to predict the relative amplitude of the resistance oscillation originating from each valley. The Zeeman energy is found to be several times larger than the cyclotron energy. It translates into a large and increasing effective Lande factor as the hole density decreases, in the continuity of the values reported in the literature at lower carrier density.

rate research

Read More

76 - Jinho Yang , Ki-seok Kim 2021
Emergent Lorentz symmetry and chiral anomaly are well known to play an essential role in anomalous transport phenomena of Weyl metals. In particular, the former causes a Berry-curvature induced orbital magnetic moment to modify the group velocity of Weyl electrons, and the latter results in the chiral magnetic effect to be responsible for a dissipationless longitudinal current channel of the bulk. In this study, we verify that intertwined these two effects can be measured in Shubnikov-de Haas (SdH) quantum oscillations, where a double-peak structure of the SdH oscillation appears to cause a kink in the Landau fan diagram. We examine three different cases which cover all possible experimental situations of external electric/magnetic fields and identify the experimental condition for the existence of the double-peak structure. We claim that interplay of the orbital magnetic moment and the chiral magnetic effect in SdH quantum oscillations is an interesting feature of the Weyl metal state.
We report polarization-resolved resonant reflection spectroscopy of a charge-tunable atomically-thin valley semiconductor hosting tightly bound excitons coupled to a dilute system of fully spin- and valley-polarized holes in the presence of a strong magnetic field. We find that exciton-hole interactions manifest themselves in hole-density dependent, Shubnikov-de Haas-like oscillations in the energy and line broadening of the excitonic resonances. These oscillations are evidenced to be precisely correlated with the occupation of Landau levels, thus demonstrating that strong interactions between the excitons and Landau-quantized itinerant carriers enable optical investigation of quantum-Hall physics in transition metal dichalcogenides.
268 - Gerd Plechinger , Tobias Korn , 2017
Semiconducting transition metal dichalcogenide monolayers have emerged as promising candidates for future valleytronics-based quantum information technologies. Two distinct momentum-states of tightly-bound electron-hole pairs in these materials can be deterministically initialized via irradiation with circularly polarized light. Here, we investigate the ultrafast dynamics of such a valley polarization in monolayer tungsten diselenide by means of time-resolved Kerr reflectometry. The observed Kerr signal in our sample stems exclusively from charge-neutral excitons. Our findings support the picture of a fast decay of the valley polarization of bright excitons due to radiative recombination, intra-conduction-band spin-flip transitions, intervalley-scattering processes, and the formation of long-lived valley-polarized dark states.
We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa$_2$Cu$_4$O$_8$ (Y124). For field aligned along the c-axis, the frequency of the oscillations is $660pm 30$ T, which corresponds to $sim 2.4$ % of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be $2.7pm0.3$ times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa$_2$Cu$_3$O$_{6.5}$ (Y123-II). We show that although small Fermi surface pockets may be expected from band structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.
166 - S. Harashima , C. Bell , M. Kim 2012
We report the electron doping in the surface vicinity of KTaO_3 by inducing oxygen-vacancies via Ar^+ -irradiation. The doped electrons have high mobility (> 10^4 cm^2/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two- and three-dimensional components. A disparity of the extracted in-plane effective mass, compared to the bulk values, suggests mixing of the orbital characters. Our observations demonstrate that Ar^+ -irradiation serves as a flexible tool to study low dimensional quantum transport in 5d semiconducting oxides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا