No Arabic abstract
The coherence of quantum Hall (QH) edges play the deciding factor in demonstrating an electron interferometer, which has potential to realize a topological qubit. A Graphene p-n junction (PNJ) with co-propagating spin and valley polarized QH edges is a promising platform for studying an electron interferometer. However, though a few experiments have been attempted for such PNJ via conductance measurements, the edge dynamics (coherent or incoherent) of QH edges at a PNJ, where either spin or valley symmetry or both are broken, remain unexplored. In this work, we have carried out the measurements of conductance together with shot noise, an ideal tool to unravel the dynamics, at low temperature (~ 10mK) in a dual graphite gated hexagonal boron nitride (hBN) encapsulated high mobility graphene device. The conductance data show that the symmetry broken QH edges at the PNJ follow spin selective equilibration. The shot noise results as a function of both p and n side filling factors reveal the unique dependence of the scattering mechanism with filling factors. Remarkably, the scattering is found to be fully tunable from incoherent to coherent regime with the increasing number of QH edges at the PNJ, shedding crucial insights into graphene based electron interferometer.
We study photodetection in graphene near a local electrostatic gate, which enables active control of the potential landscape and carrier polarity. We find that a strong photoresponse only appears when and where a p-n junction is formed, allowing on-off control of photodetection. Photocurrents generated near p-n junctions do not require biasing and can be realized using submicron gates. Locally modulated photoresponse enables a new range of applications for graphene-based photodetectors including, for example, pixilated infrared imaging with control of response on subwavelength dimensions.
We report on the fabrication and transport studies of a single-layer graphene p-n junction. Carrier type and density in two adjacent regions are individually controlled by electrostatic gating using a local top gate and a global back gate. A functionalized Al203 oxide that adheres to graphene and does not significantly affect its electronic properties is described. Measurements in the quantum Hall regime reveal new plateaus of two-terminal conductance across the junction at 1 and 3/2 times the quantum of conductance, e2/h, consistent with theory.
We have developed a device fabrication process to pattern graphene into nanostructures of arbitrary shape and control their electronic properties using local electrostatic gates. Electronic transport measurements have been used to characterize locally gated bipolar graphene $p$-$n$-$p$ junctions. We observe a series of fractional quantum Hall conductance plateaus at high magnetic fields as the local charge density is varied in the $p$ and $n$ regions. These fractional plateaus, originating from chiral edge states equilibration at the $p$-$n$ interfaces, exhibit sensitivity to inter-edge backscattering which is found to be strong for some of the plateuas and much weaker for other plateaus. We use this effect to explore the role of backscattering and estimate disorder strength in our graphene devices.
We demonstrate high-frequency mechanical resonators in ballistic graphene p-n junctions. Fully suspended graphene devices with two bottom gates exhibit ballistic bipolar behavior after current annealing. We determine the graphene mass density and built-in tension for different current annealing steps by comparing the measured mechanical resonant response to a simplified membrane model. We consistently find that after the last annealing step the mass density compares well with the expected density of pure graphene. In a graphene membrane with high built-in tension, but still of macroscopic size with dimensions 3 $times$ 1 $mu m^{2}$, a record resonance frequency of 1.17 GHz is observed after the final current annealing step. We further compare the resonance response measured in the unipolar with the one in the bipolar regime. Remarkably, the resonant signals are strongly enhanced in the bipolar regime. This enhancement is caused in part by the Fabry-Perot resonances that appear in the bipolar regime and possibly also by the photothermoelectric effect that can be very pronounced in graphene p-n junctions under microwave irradiation.
In the half-filled zero-energy Landau level of bilayer graphene, competing phases with spontaneously broken symmetries and an intriguing quantum critical behavior have been predicted. Here we investigate signatures of these broken-symmetry phases in thermal transport measurements. To this end we calculate the spectrum of spin and valley waves in the $ u=0$ quantum Hall state of bilayer graphene. The presence of Goldstone modes enables heat transport even at low temperatures, which can serve as compelling evidence for spontaneous symmetry breaking. By varying external electric and magnetic fields it is possible to determine the nature of the symmetry breaking and temperature-dependent measurements may yield additional information about gapped modes.