Do you want to publish a course? Click here

The Faint End of the Quasar Luminosity Function at $z sim 5$ from the Subaru Hyper Suprime-Cam Survey

80   0   0.0 ( 0 )
 Added by Mana Niida
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the quasar luminosity function at $z sim 5$ derived from the optical wide-field survey data obtained as a part of the Subaru strategic program (SSP) with Hyper Suprime-Cam (HSC). From $sim$81.8 deg$^2$ area in the Wide layer of the HSC-SSP survey, we selected 224 candidates of low-luminosity quasars at $z sim 5$ by adopting the Lyman-break method down to $i = 24.1$ mag. Based on our candidates and spectroscopically-confirmed quasars from the Sloan Digital Sky Survey (SDSS), we derived the quasar luminosity function at $z sim 5$ covering a wide luminosity range of $-28.76 < M_{rm 1450} < -22.32$ mag. We found that the quasar luminosity function is fitted by a double power-law model with a break magnitude of $M^{*}_{1450} = -25.05^{+0.10}_{-0.24}$ mag. The inferred number density of low-luminosity quasars is lower, and the derived faint-end slope, $-1.22^{+0.03}_{-0.10}$, is flatter than those of previous studies at $z sim 5$. A compilation of the quasar luminosity function at $4 leq z leq 6$ from the HSC-SSP suggests that there is little redshift evolution in the break magnitude and in the faint-end slope within this redshift range, although previous studies suggest that the faint-end slope becomes steeper at higher redshifts. The number density of low-luminosity quasars decreases more rapidly from $z sim 5$ to $z sim 6$ than from $z sim 4$ to $z sim 5$.



rate research

Read More

We take advantage of the capability of the OTELO survey to obtain the H$alpha$ luminosity function (LF) at ${rm z}sim0.40$. Because of the deepest coverage of OTELO, we are able to determine the faint end of the LF, and thus better constrain the star formation rate and the number of galaxies at low luminosities. The AGN contribution to this LF is estimated as well. We make use of the multi-wavelength catalogue of objects in the field compiled by the OTELO survey, which is unique in terms of minimum flux and equivalent width. We also take advantage of the pseudo-spectra built for each source, which allow the identification of emission lines and the discrimination of different types of objects. The H$alpha$ luminosity function at $zsim0.40$ is obtained, which extends the current faint end by almost 1 dex, reaching minimal luminosities of $log_{10}L_{rm lim}=38.5$ erg s$^{-1}$ (or $sim0.002, text{M}_odottext{ yr}^{-1})$. The AGN contribution to the total H$alpha$ luminosity is estimated. We find that no AGN should be expected below a luminosity of $log_{10}L=38.6$ erg s$^{-1}$. From the sample of non-AGN (presumably, pure SFG) at $zsim0.40$ we estimated a star formation rate density of $rho_{rm SFR}=0.012pm0.005 {rm text{M}_{odot} yr^{-1} Mpc^{-3}}$.
We investigate the galaxy overdensity around proto-cluster scale quasar pairs at high (z>3) and low (z~1) redshift based on the unprecedentedly wide and deep optical survey of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first-year survey data covering effectively ~121 deg^2 with the 5sigma depth of i~26.4 and the SDSS DR12Q catalog, we find two luminous pairs at z~3.3 and 3.6 which reside in >5sigma overdense regions of g-dropout galaxies at i<25. The projected separations of the two pairs are R_perp=1.75 and 1.04 proper Mpc, and their velocity offsets are Delta V=692 and 1448 km s^{-1}, respectively. This result is in clear contrast to the average z~4 quasar environments as discussed in Uchiyama et al. (2017) and implies that the quasar activities of the pair members are triggered via major mergers in proto-clusters, unlike the vast majority of isolated quasars in general fields that may turn on via non-merger events such as bar and disk instabilities. At z~1, we find 37 pairs with R_perp<2 pMpc and Delta V<2300 km s^{-1} in the current HSC-Wide coverage, including four from Hennawi et al. (2006). The distribution of the peak overdensity significance within two arcminutes around the pairs has a long tail toward high density (>4sigma) regions. Thanks to the large sample size, we find a statistical evidence that this excess is unique to the pair environments when compared to single quasar and randomly selected galaxy environments at the same redshift range. Moreover, there are nine small-scale (R_perp<1 pMpc) pairs, two of which are found to reside in cluster fields. Our results demonstrate that <2 pMpc-scale quasar pairs at both redshift range tend to occur in massive haloes, although perhaps not the most massive ones, and that they are useful to search for rare density peaks.
138 - Eilat Glikman 2009
We have conducted a spectroscopic survey to find faint quasars (-26.0 < M_{1450} < -22.0) at redshifts z=3.8-5.2 in order to measure the faint end of the quasar luminosity function at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg^2. Thirty candidates have R <= 23 mags. We conducted spectroscopic followup for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z <5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450A. Considering only our R <= 23 sample, the best-fit single power-law (Phi propto L^beta) gives a faint-end slope beta = -1.6+/-0.2. If we consider our larger, but highly incomplete sample going one magnitude fainter, we measure a steeper faint-end slope -2 < beta < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law luminosity function. Our best fit finds a bright-end slope, alpha = -2.4+/-0.2, and faint-end slope, beta = -2.3+/-0.2, without a well-constrained break luminosity. This is effectively a single power-law, with beta = -2.7+/-0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts.
The relationship between quasars and their host galaxies provides clues on how supermassive black holes (SMBHs) and massive galaxies are jointly assembled. To elucidate this connection, we measure the structural and photometric properties of the host galaxies of ~5000 SDSS quasars at 0.2<z<1 using five-band (grizy) optical imaging from the Hyper Suprime-Cam Subaru Strategic Program. An automated analysis tool is used to forward-model the blended emission of the quasar as characterized by the point spread function and the underlying host galaxy as a two-dimensional Sersic profile. In agreement with previous studies, quasars are preferentially hosted by massive star-forming galaxies with disk-like light profiles. Furthermore, we find that the size distribution of quasar hosts is broad at a given stellar mass and the average values exhibit a size-stellar mass relation as seen with inactive galaxies. In contrast, the sizes of quasar hosts are more compact than inactive star-forming galaxies on average, but not as compact as quiescent galaxies of similar stellar masses. This is true irrespective of quasar properties including bolometric luminosity, Eddington ratio, and black hole mass. These results are consistent with a scenario in which galaxies are concurrently fueling a SMBH and building their stellar bulge from a centrally-concentrated gas reservoir. Alternatively, quasar hosts may be experiencing a compaction process in which stars from the disk and inflowing gas are responsible for growing the bulge. In addition, we confirm that the host galaxies of type-1 quasars have a bias of being closer towards face-on, suggesting that galactic-scale dust can contribute to obscuring the broad-line region.
342 - H. Ikeda , T. Nagao , K. Matsuoka 2012
We present the result of our low-luminosity quasar survey in the redshift range of 4.5 < z < 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i < 24 at z~5, that are ~ 3 mag fainter than the SDSS quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z~5 while a low-luminosity type-2 quasar at z~5.07 was discovered. In order to constrain the faint end of the quasar luminosity function at z~5, we calculated the 1sigma confidence upper limits of the space density of type-1 quasars. As a result, the 1sigma confidence upper limits on the quasar space density are Phi< 1.33*10^{-7} Mpc^{-3} mag^{-1} for -24.52 < M_{1450} < -23.52 and Phi< 2.88*10^{-7} Mpc^{-3} mag^{-1} for -23.52 < M_{1450} < -22.52. The inferred 1sigma confidence upper limits of the space density are then used to provide constrains on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z~5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M_{1450} ~ -23), being similar to the trend found for quasars with high luminosity (M_{1450}<-26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا