Do you want to publish a course? Click here

On the apparent molar volume of methanol in water-methanol mixtures. Composition and temperature effects from molecular dynamics study

115   0   0.0 ( 0 )
 Added by Orest Pizio
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the effects of composition and temperature on the apparent molar volumes of species of water-methanol mixtures. Isothermal-isobaric molecular dynamics simulations are used with this purpose. Several combinations of models for water and for methanol are explored. Validity of predictions concerned with a puzzling minimum of apparent molar volume of methanol in water-rich solutions is tested against experimental results.



rate research

Read More

Isothermal-isobaric molecular dynamics simulations are used to examine the microscopic structure and some properties of water-methanol liquid mixture. The TIP4P/2005 and SPC/E water models are combined with the united atom TraPPE and the all-atom force field model for methanol. Our principal focus is to evaluate the quality of predictions of different combinations of model force fields concerning the composition dependence of basic properties of this system. Specifically, we explored the composition effects on density, excess molar volume and excess entropy, as well as on the surface tension and static dielectric constant. In addition, the structural properties are described in terms of the coordination numbers and the average number of hydrogen bonds between molecules of constituent species. Finally, the composition dependence of self-diffusion coefficients of the species is evaluated. All theoretical predictions are tested with respect to experimental data.
We have investigated thermodynamic and dynamic properties as well as the dielectric constant of water-metha-nol model mixtures in the entire range of composition by using constant pressure molecular dynamics simulations at ambient conditions. The SPC/E and TIP4P/Ew water models are used in combination with the OPLS united atom modelling for methanol. Changes of the average number of hydrogen bonds between particles of different species and of the fractions of differently bonded molecules are put in correspondence with the behavior of excess mixing volume and enthalpy, of self-diffusion coefficients and rotational relaxation times. From the detailed analyses of the results obtained in this work, we conclude that an improvement of the description of an ample set of properties of water-methanol mixtures can possibly be reached, if a more sophisticated, carefully parameterized, e.g., all atom, model for methanol is used. Moreover, exploration of parametrization of the methanol force field, with simultaneous application of different combination rules for methanol-water cross interactions, is required.
Isothermal-isobaric molecular dynamics simulations are used to examine the microscopic structure and other properties of a model solution consisting of NaCl salt dissolved in water-methanol mixture. The SPC/E water model and the united atom model for methanol are combined with the force field for ions by Dang [J. Amer. Chem. Soc., 1995, 117, 6954] to describe the entire system. Our principal focus is to study the effects of two variables, namely, the solvent composition and ion concentrations on the solutions density, on the structural properties, self-diffusion coefficients of the species and the dielectric constant. Moreover, we performed a detailed analysis of the first coordination numbers of the species. Trends of the behaviour of the average number of hydrogen bonds between solvent molecules are evaluated.
The properties of model solutions consisting of a solute --- single curcumin molecule in water, methanol and dimethyl sulfoxide solvents have been studied using molecular dynamics (MD) computer simulations in the isobaric-isothermal ensemble. The united atom OPLS force field (OPLS-UA) model for curcumin molecule proposed by us recently [J. Mol. Liq., 2016, 223, 707] in combination with the SPC/E water, and the OPLS-UA type models for methanol and dimethyl sulfoxide have been applied. We have described changes of the internal structure of the solute molecule induced by different solvent media in very detail. The pair distribution functions between particular fragments of a solute molecule with solvent particles have been analyzed. Statistical features of the hydrogen bonding between different species were explored. Finally, we have obtained a self-diffusion coefficient of curcumin molecules in three model solvents.
Methanol is a potentially important impurity in subsurface oceans on Titan and Enceladus. We report measurements of the freezing of methanol-water samples at pressures up to 350~MPa using a volumetric cell with sapphire windows. For low concentrations of methanol, the liquidus temperature is typically a few degrees below the corresponding ice freezing point, while at high concentrations it follows the pure methanol trend. In the Ice-III regime, we observe several long-lived metastable states. The results suggest that methanol is a more effective antifreeze than previously estimated, and might have played an important role in the development of Titans subsurface ocean.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا