Do you want to publish a course? Click here

Cohomology and Deformations of left-symmetric Rinehart Algebras

149   0   0.0 ( 0 )
 Added by Mohamed Elhamdadi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a notion of left-symmetric Rinehart algebras, which is a generalization of a left-symmetric algebras. The left multiplication gives rise to a representation of the corresponding sub-adjacent Lie-Rinehart algebra. We construct left-symmetric Rinehart algebra from $mathcal O$-operators on Lie-Rinehart algebra. We extensively investigate representations of a left-symmetric Rinehart algebras. Moreover, we study deformations of left-symmetric Rinehart algebras, which is controlled by the second cohomology class in the deformation cohomology. We also give the relationships between $mathcal O$-operators and Nijenhuis operators on left-symmetric Rinehart algebras.



rate research

Read More

We introduce a notion of $n$-Lie Rinehart algebras as a generalization of Lie Rinehart algebras to $n$-ary case. This notion is also an algebraic analogue of $n$-Lie algebroids. We develop representation theory and describe a cohomology complex of $n$-Lie Rinehart algebras. Furthermore, we investigate extension theory of $n$-Lie Rinehart algebras by means of $2$-cocycles. Finally, we introduce crossed modules of $n$-Lie Rinehart algebras to gain a better understanding of their third dimensional cohomology groups.
245 - Paolo Saracco 2021
We prove how the universal enveloping algebra constructions for Lie-Rinehart algebras and anchored Lie algebras are naturally left adjoint functors. This provides a conceptual motivation for the universal properties these constructions satisfy. As a supplement, the categorical approach offers new insights into the definitions of Lie-Rinehart algebra morphisms, of modules over Lie-Rinehart algebras and of the infinitesimal gauge algebra of a module.
In this paper, we define a class of 3-algebras which are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple $(L, A, rho)$, where $A$ is a commutative associative algebra, $L$ is an $A$-module, $(A, rho)$ is a 3-Lie algebra $L$-module and $rho(L, L)subseteq Der(A)$. We discuss the basic structures, actions and crossed modules of 3-Lie-Rinehart algebras and construct 3-Lie-Rinehart algebras from given algebras, we also study the derivations from 3-Lie-Rinehart algebras to 3-Lie $A$-algebras. From the study, we see that there is much difference between 3-Lie algebras and 3-Lie-Rinehart algebras.
In this paper we prove some general results on Leibniz 2-cocycles for simple Leibniz algebras. Applying these results we establish the triviality of the second Leibniz cohomology for a simple Leibniz algebra with coefficients in itself, whose associated Lie algebra is isomorphic to $mathfrak{sl}_2$.
After endowing with a 3-Lie-Rinehart structure on Hom 3-Lie algebras, we obtain a class of special Hom 3-Lie algebras, which have close relationships with representations of commutative associative algebras. We provide a special class of Hom 3-Lie-Rinehart algebras, called split regular Hom 3-Lie-Rinehart algebras, and we then characterize their structures by means of root systems and weight systems associated to a splitting Cartan subalgebra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا