Do you want to publish a course? Click here

Rethinking Attention with Performers

94   0   0.0 ( 0 )
 Added by Xingyou Song
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can be also used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers.



rate research

Read More

Transformer networks have lead to important progress in language modeling and machine translation. These models include two consecutive modules, a feed-forward layer and a self-attention layer. The latter allows the network to capture long term dependencies and are often regarded as the key ingredient in the success of Transformers. Building upon this intuition, we propose a new model that solely consists of attention layers. More precisely, we augment the self-attention layers with persistent memory vectors that play a similar role as the feed-forward layer. Thanks to these vectors, we can remove the feed-forward layer without degrading the performance of a transformer. Our evaluation shows the benefits brought by our model on standard character and word level language modeling benchmarks.
The attention module, which is a crucial component in Transformer, cannot scale efficiently to long sequences due to its quadratic complexity. Many works focus on approximating the dot-then-exponentiate softmax function in the original attention, leading to sub-quadratic or even linear-complexity Transformer architectures. However, we show that these methods cannot be applied to more powerful attention modules that go beyond the dot-then-exponentiate style, e.g., Transformers with relative positional encoding (RPE). Since in many state-of-the-art models, relative positional encoding is used as default, designing efficient Transformers that can incorporate RPE is appealing. In this paper, we propose a novel way to accelerate attention calculation for Transformers with RPE on top of the kernelized attention. Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT). With FFT, our method achieves $mathcal{O}(nlog n)$ time complexity. Interestingly, we further demonstrate that properly using relative positional encoding can mitigate the training instability problem of vanilla kernelized attention. On a wide range of tasks, we empirically show that our models can be trained from scratch without any optimization issues. The learned model performs better than many efficient Transformer variants and is faster than standard Transformer in the long-sequence regime.
Although deep neural networks generally have fixed network structures, the concept of dynamic mechanism has drawn more and more attention in recent years. Attention mechanisms compute input-dependent dynamic attention weights for aggregating a sequence of hidden states. Dynamic network configuration in convolutional neural networks (CNNs) selectively activates only part of the network at a time for different inputs. In this paper, we combine the two dynamic mechanisms for text classification tasks. Traditional attention mechanisms attend to the whole sequence of hidden states for an input sentence, while in most cases not all attention is needed especially for long sequences. We propose a novel method called Gated Attention Network (GA-Net) to dynamically select a subset of elements to attend to using an auxiliary network, and compute attention weights to aggregate the selected elements. It avoids a significant amount of unnecessary computation on unattended elements, and allows the model to pay attention to important parts of the sequence. Experiments in various datasets show that the proposed method achieves better performance compared with all baseline models with global or local attention while requiring less computation and achieving better interpretability. It is also promising to extend the idea to more complex attention-based models, such as transformers and seq-to-seq models.
Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks. Most such models use deterministic attention while stochastic attention is less explored due to the optimization difficulties or complicated model design. This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights with a hierarchy of gamma distributions, and an encoder network by stacking Weibull distributions with a deterministic-upward-stochastic-downward structure to approximate the posterior. The resulting auto-encoding networks can be optimized in a differentiable way with a variational lower bound. It is simple to convert any models with deterministic attention, including pretrained ones, to the proposed Bayesian attention belief networks. On a variety of language understanding tasks, we show that our method outperforms deterministic attention and state-of-the-art stochastic attention in accuracy, uncertainty estimation, generalization across domains, and robustness to adversarial attacks. We further demonstrate the general applicability of our method on neural machine translation and visual question answering, showing great potential of incorporating our method into various attention-related tasks.
76 - Richard Shin 2019
When translating natural language questions into SQL queries to answer questions from a database, we would like our methods to generalize to domains and database schemas outside of the training set. To handle complex questions and database schemas with a neural encoder-decoder paradigm, it is critical to properly encode the schema as part of the input with the question. In this paper, we use relation-aware self-attention within the encoder so that it can reason about how the tables and columns in the provided schema relate to each other and use this information in interpreting the question. We achieve significant gains on the recently-released Spider dataset with 42.94% exact match accuracy, compared to the 18.96% reported in published work.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا