Do you want to publish a course? Click here

Gravitational Contact Interactions and the Physical Equivalence of Weyl Transformations in Effective Field Theory

100   0   0.0 ( 0 )
 Added by Christopher T. Hill
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Theories of scalars and gravity, with non-minimal interactions, $sim (M_P^2 +F(phi) )R +L(phi)$, have graviton exchange induced contact terms. These terms arise in single particle reducible diagrams with vertices $propto q^2$ that cancel the Feynman propagator denominator $1/q^2$ and are familiar in various other physical contexts. In gravity these lead to additional terms in the action such as $sim F(phi) T_mu^mu(phi)/M_P^2$ and $F(phi)partial^2 F(phi)/M_P^2$. The contact terms are equivalent to induced operators obtained by a Weyl transformation that removes the non-minimal interactions, leaving a minimal Einstein-Hilbert gravitational action. This demonstrates explicitly the equivalence of different representations of the action under Weyl transformations, both classically and quantum mechanically. To avoid such hidden contact terms one is compelled to go to the minimal Einstein-Hilbert representation.



rate research

Read More

We study the gravitational radiation emitted during the scattering of two spinless bodies in the post-Minkowskian Effective Field Theory approach. We derive the conserved stress-energy tensor linearly coupled to gravity and the classical probability amplitude of graviton emission at leading and next-to-leading order in the Newtons constant $G$. The amplitude can be expressed in compact form as one-dimensional integrals over a Feynman parameter involving Bessel functions. We use it to recover the leading-order radiated angular momentum expression. Upon expanding it in the relative velocity between the two bodies $v$, we compute the total four-momentum radiated into gravitational waves at leading-order in $G$ and up to an order $v^8$, finding agreement with what was recently computed using scattering amplitude methods. Our results also allow us to investigate the zero frequency limit of the emitted energy spectrum.
Effective field theories describing gravity coupled to matter are investigated, allowing for operators of arbitrary mass dimension. Terms violating local Lorentz and diffeomorphism invariance while preserving internal gauge symmetries are included. The theoretical framework for violations of local Lorentz and diffeomorphism invariance and associated conceptual issues are discussed, including transformations in curved and approximately flat spacetimes, the treatment of various types of backgrounds, the implications of symmetry breaking, and the no-go constraints for explicit violation in Riemann geometry. Techniques are presented for the construction of effective operators, and the possible terms in the gravity, gauge, fermion, and scalar sectors are classified and enumerated. Explicit expressions are obtained for terms containing operators of mass dimension six or less in the effective action for General Relativity coupled to the Standard Model of particle physics. Special cases considered include Einstein-Maxwell effective field theories and the limit with only scalar coupling constants.
In this paper we construct an effective field theory (EFT) that describes long wavelength gravitational radiation from compact systems. To leading order, this EFT consists of the multipole expansion, which we describe in terms of a diffeomorphism invariant point particle Lagrangian. The EFT also systematically captures post-Minkowskian corrections to the multipole expansion due to non-linear terms in general relativity. Specifically, we compute long distance corrections from the coupling of the (mass) monopole moment to the quadrupole moment, including up to two mass insertions. Along the way, we encounter both logarithmic short distance (UV) and long wavelength (IR) divergences. We show that the UV divergences can be (1) absorbed into a renormalization of the multipole moments and (2) resummed via the renormalization group. The IR singularities are shown to cancel from properly defined physical observables. As a concrete example of the formalism, we use this EFT to reproduce a number of post-Newtonian corrections to the gravitational wave energy flux from non-relativistic binaries, including long distance effects up to 3PN ($v^6$) order. Our results verify that the factorization of scales proposed in the NRGR framework of Goldberger and Rothstein is consistent up to order 3PN.
We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter wave, microwave, optical, and Mossbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the $10^{-6}$ level.
Effective theory of fluctuations based on underlying symmetry plays very important role in understanding the low energy phenomena. Using this powerful technique we study the fluctuation dynamics keeping in mind the following central question: does the effective theory of black hole provide any information about the possible existence of hair? Assuming the symmetry of the hair being that of the underlying black hole space-time, we start by writing down the most general action for the background and the fluctuation in the effective field theory framework. Considering the asymptotically flat and de Sitter black hole background with a spherically symmetric hair we derived the most general equation of motion for the fluctuation. For a particular choice of theory parameters, quasinormal modes corresponding to those fluctuations appeared to have distinct features compared to that of the usual black hole quasinormal modes. The background equations from the effective theory Lagrangian, on the other hand, seemed to suggest that the underlying theory of the hair under consideration should be higher derivative in nature. Therefore as a concrete example we construct a class of higher derivative scalar field theory which gives rise to spherically symmetric hair through background cosmological constant. We also calculate the quasinormal modes whose behaviour turned out to be similar to the one discussed from the effective theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا