Do you want to publish a course? Click here

Study of the spatial association between an active region jet and a nonthermal type~${rm III}$ radio burst

54   0   0.0 ( 0 )
 Added by Rohit Sharma
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim to investigate the spatial location of the source of an active region (AR) jet and its relation with associated nonthermal type~III radio emission. An emission measure (EM) method was used to study the thermodynamic nature of the AR jet. The nonthermal type~{rm III} radio burst observed at meterwavelength was studied using the Murchison Widefield Array (MWA) radio imaging and spectroscopic data. The local configuration of the magnetic field and the connectivity of the source region of the jet with open magnetic field structures was studied using a nonlinear force-free field (NLFFF) extrapolation and potential field source surface (PFSS) extrapolation respectively. The plane-of-sky velocity of the AR jet was found to be $sim$136~km/s. The EM analysis confirmed the presence of low temperature 2~MK plasma for the spire, whereas hot plasma, between 5-8 MK, was present at the footpoint region which also showed the presence of Fe~{sc xviii} emission. A lower limit on the electron number density was found to be 1.4$times$10$^{8}$ cm$^{-3}$ for the spire and 2.2$times$10$^{8}$~cm$^{-3}$ for the footpoint. A temporal and spatial correlation between the AR jet and nonthermal type III burst confirmed the presence of open magnetic fields. An NLFFF extrapolation showed that the photospheric footpoints of the null point were anchored at the location of the source brightening of the jet. The spatial location of the radio sources suggests an association with the extrapolated closed and open magnetic fields although strong propagation effects are also present. The multi-scale analysis of the field at local, AR, and solar scales confirms the interlink between different flux bundles involved in the generation of the type III radio signal with flux transferred from a small coronal hole to the periphery of the sunspot via null point reconnection with an emerging structure.



rate research

Read More

We present low-frequency (80-240 MHz) radio imaging of type III solar radio bursts observed by the Murchison Widefield Array (MWA) on 2015/09/21. The source region for each burst splits from one dominant component at higher frequencies into two increasingly-separated components at lower frequencies. For channels below ~132 MHz, the two components repetitively diverge at high speeds (0.1-0.4 c) along directions tangent to the limb, with each episode lasting just ~2 s. We argue that both effects result from the strong magnetic field connectivity gradient that the burst-driving electron beams move into. Persistence mapping of extreme ultraviolet (EUV) jets observed by the Solar Dynamics Observatory reveals quasi-separatrix layers (QSLs) associated with coronal null points, including separatrix dome, spine, and curtain structures. Electrons are accelerated at the flare site toward an open QSL, where the beams follow diverging field lines to produce the source splitting, with larger separations at larger heights (lower frequencies). The splitting motion within individual frequency bands is interpreted as a projected time-of-flight effect, whereby electrons traveling along the outer field lines take slightly longer to excite emission at adjacent positions. Given this interpretation, we estimate an average beam speed of 0.2 c. We also qualitatively describe the quiescent corona, noting in particular that a disk-center coronal hole transitions from being dark at higher frequencies to bright at lower frequencies, turning over around 120 MHz. These observations are compared to synthetic images based on the Magnetohydrodynamic Algorithm outside a Sphere (MAS) model, which we use to flux-calibrate the burst data.
Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections and numerous smaller-scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims. Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods. We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet, and radio data from the Low Frequency Array (LOFAR) and the Nanc{c}ay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at ~11:06 UT. Results. The J-burst showed fundamental and harmonic components and it was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred at a time and location coincident with the radio burst, in the northern hemisphere, and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions. Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst which shows the path of the accelerated electrons.
Context. To investigate the source of a type III radio burst storm during encounter 2 of NASAs Parker Solar Probe (PSP) mission. Aims. It was observed that in encounter 2 of NASAs Parker Solar Probe mission there was a large amount of radio activity, and in particular a noise storm of frequent, small type III bursts from 31st March to 6th April 2019. Our aim is to investigate the source of these small and frequent bursts. Methods. In order to do this, we analysed data from the Hinode EUV Imaging Spectrometer (EIS), PSP FIELDS, and the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). We studied the behaviour of active region 12737, whose emergence and evolution coincides with the timing of the radio noise storm and determined the possible origins of the electron beams within the active region. To do this, we probe the dynamics, Doppler velocity, non-thermal velocity, FIP bias, densities, and carry out magnetic modelling. Results. We demonstrate that although the active region on the disk produces no significant flares, its evolution indicates it is a source of the electron beams causing the radio storm. They most likely originate from the area at the edge of the active region that shows strong blue-shifted plasma. We demonstrate that as the active region grows and expands, the area of the blue-shifted region at the edge increases, which is also consistent with the increasing area where large-scale or expanding magnetic field lines from our modelling are anchored. This expansion is most significant between 1 and 4 April 2019, coinciding with the onset of the type III storm and the decrease of the individual bursts peak frequency, indicating the height at which the peak radiation is emitted increases as the active region evolves.
We present coronal density profiles derived from low-frequency (80-240 MHz) imaging of three type III solar radio bursts observed at the limb by the Murchison Widefield Array (MWA). Each event is associated with a white light streamer at larger heights and is plausibly associated with thin extreme ultraviolet rays at lower heights. Assuming harmonic plasma emission, we find average electron densities of 1.8 x10^8 cm^-3 down to 0.20 x10^8 cm^-3 at heights of 1.3 to 1.9 solar radii. These values represent roughly 2.4-5.4x enhancements over canonical background levels and are comparable to the highest streamer densities obtained from data at other wavelengths. Assuming fundamental emission instead would increase the densities by a factor of 4. High densities inferred from type III source heights can be explained by assuming that the exciting electron beams travel along overdense fibers or by radio propagation effects that may cause a source to appear at a larger height than the true emission site. We review the arguments for both scenarios in light of recent results. We compare the extent of the quiescent corona to model predictions to estimate the impact of propagation effects, which we conclude can only partially explain the apparent density enhancements. Finally, we use the time- and frequency-varying source positions to estimate electron beam speeds of between 0.24 and 0.60 c.
We present a study of a recurring jet observed on October 31, 2011 by SDO/AIA, Hinode/XRT and Hinode/EIS. We discuss the physical parameters of the jet such as density, differential emission measure, peak temperature, velocity and filling factor obtained using imaging and spectroscopic observations. A differential emission measure (DEM) analysis was performed at the region of the jet-spire and the footpoint using EIS observations and also by combining AIA and XRT observations. The DEM curves were used to create synthetic spectra with the CHIANTI atomic database. The plasma along the line-of-sight in the jet-spire and jet-footpoint was found to be peak at 2.0 MK. We calculated electron densities using the Fe XII ($lambda$186/$lambda$195) line ratio in the region of the spire (Ne = 7.6x$10^{10}$ $cm^{-3}$) and the footpoint (1.1x$10^{11}$ $cm^{-3}$). The plane-of-sky velocity of the jet is found to be 524 km/s. The resulting EIS DEM values are in good agreement with those obtained from AIA-XRT. There is no indication of high temperatures, such as emission from Fe XVII ($lambda$254.87) (log T [K] = 6.75) seen in the jet-spire. In case of the jet-footpoint, synthetic spectra predict weak contributions from Ca XVII ($lambda$192.85) and Fe XVII ($lambda$254.87). With further investigation, we confirmed emission from the Fe XVIII ($lambda$93.932) line in the AIA 94 ${AA}$ channel in the region of the footpoint. We also found good agreement between the estimated and predicted Fe XVIII count rates. A study of the temporal evolution of the jet-footpoint and the presence of high-temperature emission from the Fe XVIII (log T [K] = 6.85) line leads us to conclude that the hot component in the jet-footpoint was present initially that the jet had cooled down by the time EIS observed it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا