Do you want to publish a course? Click here

Restoring Spatially-Heterogeneous Distortions using Mixture of Experts Network

77   0   0.0 ( 0 )
 Added by Namhyuk Ahn
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In recent years, deep learning-based methods have been successfully applied to the image distortion restoration tasks. However, scenarios that assume a single distortion only may not be suitable for many real-world applications. To deal with such cases, some studies have proposed sequentially combined distortions datasets. Viewing in a different point of combining, we introduce a spatially-heterogeneous distortion dataset in which multiple corruptions are applied to the different locations of each image. In addition, we also propose a mixture of experts network to effectively restore a multi-distortion image. Motivated by the multi-task learning, we design our network to have multiple paths that learn both common and distortion-specific representations. Our model is effective for restoring real-world distortions and we experimentally verify that our method outperforms other models designed to manage both single distortion and multiple distortions.

rate research

Read More

Sparsely-gated Mixture of Experts networks (MoEs) have demonstrated excellent scalability in Natural Language Processing. In Computer Vision, however, almost all performant networks are dense, that is, every input is processed by every parameter. We present a Vision MoE (V-MoE), a sparse version of the Vision Transformer, that is scalable and competitive with the largest dense networks. When applied to image recognition, V-MoE matches the performance of state-of-the-art networks, while requiring as little as half of the compute at inference time. Further, we propose an extension to the routing algorithm that can prioritize subsets of each input across the entire batch, leading to adaptive per-image compute. This allows V-MoE to trade-off performance and compute smoothly at test-time. Finally, we demonstrate the potential of V-MoE to scale vision models, and train a 15B parameter model that attains 90.35% on ImageNet.
In this paper, we propose a novel mixture of expert architecture for learning polyhedral classifiers. We learn the parameters of the classifierusing an expectation maximization algorithm. Wederive the generalization bounds of the proposedapproach. Through an extensive simulation study, we show that the proposed method performs comparably to other state-of-the-art approaches.
63 - Faicel Chamroukhi 2016
Mixture of Experts (MoE) is a popular framework for modeling heterogeneity in data for regression, classification, and clustering. For regression and cluster analyses of continuous data, MoE usually use normal experts following the Gaussian distribution. However, for a set of data containing a group or groups of observations with heavy tails or atypical observations, the use of normal experts is unsuitable and can unduly affect the fit of the MoE model. We introduce a robust MoE modeling using the $t$ distribution. The proposed $t$ MoE (TMoE) deals with these issues regarding heavy-tailed and noisy data. We develop a dedicated expectation-maximization (EM) algorithm to estimate the parameters of the proposed model by monotonically maximizing the observed data log-likelihood. We describe how the presented model can be used in prediction and in model-based clustering of regression data. The proposed model is validated on numerical experiments carried out on simulated data, which show the effectiveness and the robustness of the proposed model in terms of modeling non-linear regression functions as well as in model-based clustering. Then, it is applied to the real-world data of tone perception for musical data analysis, and the one of temperature anomalies for the analysis of climate change data. The obtained results show the usefulness of the TMoE model for practical applications.
Domain generalizable (DG) person re-identification (ReID) is a challenging problem because we cannot access any unseen target domain data during training. Almost all the existing DG ReID methods follow the same pipeline where they use a hybrid dataset from multiple source domains for training, and then directly apply the trained model to the unseen target domains for testing. These methods often neglect individual source domains discriminative characteristics and their relevances w.r.t. the unseen target domains, though both of which can be leveraged to help the models generalization. To handle the above two issues, we propose a novel method called the relevance-aware mixture of experts (RaMoE), using an effective voting-based mixture mechanism to dynamically leverage source domains diverse characteristics to improve the models generalization. Specifically, we propose a decorrelation loss to make the source domain networks (experts) keep the diversity and discriminability of individual domains characteristics. Besides, we design a voting network to adaptively integrate all the experts features into the more generalizable aggregated features with domain relevance. Considering the target domains invisibility during training, we propose a novel learning-to-learn algorithm combined with our relation alignment loss to update the voting network. Extensive experiments demonstrate that our proposed RaMoE outperforms the state-of-the-art methods.
fMRI semantic category understanding using linguistic encoding models attempts to learn a forward mapping that relates stimuli to the corresponding brain activation. State-of-the-art encoding models use a single global model (linear or non-linear) to predict brain activation given the stimulus. However, the critical assumption in these methods is that a priori different brain regions respond the same way to all the stimuli, that is, there is no modularity or specialization assumed for any region. This goes against the modularity theory, supported by many cognitive neuroscience investigations suggesting that there are functionally specialized regions in the brain. In this paper, we achieve this by clustering similar regions together and for every cluster we learn a different linear regression model using a mixture of linear experts model. The key idea here is that each linear expert captures the behaviour of similar brain regions. Given a new stimulus, the utility of the proposed model is twofold (i) predicts the brain activation as a weighted linear combination of the activations of multiple linear experts and (ii) to learn multiple experts corresponding to different brain regions. We argue that each expert captures activity patterns related to a particular region of interest (ROI) in the human brain. This study helps in understanding the brain regions that are activated together given different kinds of stimuli. Importantly, we suggest that the mixture of regression experts (MoRE) framework successfully combines the two principles of organization of function in the brain, namely that of specialization and integration. Experiments on fMRI data from paradigm 1 [1]where participants view linguistic stimuli show that the proposed MoRE model has better prediction accuracy compared to that of conventional models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا