The Zwicky Transient Facility (ZTF) reported the event ZTF19abanrhr as a candidate electromagnetic (EM) counterpart at a redshift $z=0.438$ to the gravitational wave (GW) emission from the binary black hole merger GW190521. Assuming that ZTF19abanrhr is the {it bona fide} EM counterpart to GW190521, and using the GW luminosity distance estimate from three different waveforms NRSur7dq4, SEOBNRv4PHM, and IMRPhenomPv3HM, we report a measurement of the Hubble constant $H_0= 50.4_{-19.5}^{+28.1}$ km/s/Mpc, $ 62.2_{-19.7}^{+29.5}$ km/s/Mpc, and $ 43.1_{-11.4}^{+24.6}$ km/s/Mpc (median along with $68%$ credible interval) respectively after marginalizing over matter density $Omega_m$ (or dark energy equation of state $w_0$) assuming the flat LCDM (or wCDM) model. Combining our results with the binary neutron star event GW170817 with its redshift measurement alone, as well as with its inclination angle inferred from Very Large Baseline Interferometry (VLBI), we find $H_0= 67.6_{-4.2}^{+4.3}$ km/s/Mpc, $Omega_m= 0.47_{-0.27}^{+0.34}$, and $w_0= -1.17_{-0.57}^{+0.68}$ (median along with $68%$ credible interval) providing the most stringent measurement on $H_0$ and the first estimation on $Omega_m$ and $w_0$ from bright standard siren. In the future, $1.3%$ measurement of $H_0=68$ km/s/Mpc and $28%$ measurement of $w_0=-1$ is possible from about $200$ GW190521-like sources.