Do you want to publish a course? Click here

First measurement of the Hubble parameter from bright binary black hole GW190521

73   0   0.0 ( 0 )
 Added by Suvodip Mukherjee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Zwicky Transient Facility (ZTF) reported the event ZTF19abanrhr as a candidate electromagnetic (EM) counterpart at a redshift $z=0.438$ to the gravitational wave (GW) emission from the binary black hole merger GW190521. Assuming that ZTF19abanrhr is the {it bona fide} EM counterpart to GW190521, and using the GW luminosity distance estimate from three different waveforms NRSur7dq4, SEOBNRv4PHM, and IMRPhenomPv3HM, we report a measurement of the Hubble constant $H_0= 50.4_{-19.5}^{+28.1}$ km/s/Mpc, $ 62.2_{-19.7}^{+29.5}$ km/s/Mpc, and $ 43.1_{-11.4}^{+24.6}$ km/s/Mpc (median along with $68%$ credible interval) respectively after marginalizing over matter density $Omega_m$ (or dark energy equation of state $w_0$) assuming the flat LCDM (or wCDM) model. Combining our results with the binary neutron star event GW170817 with its redshift measurement alone, as well as with its inclination angle inferred from Very Large Baseline Interferometry (VLBI), we find $H_0= 67.6_{-4.2}^{+4.3}$ km/s/Mpc, $Omega_m= 0.47_{-0.27}^{+0.34}$, and $w_0= -1.17_{-0.57}^{+0.68}$ (median along with $68%$ credible interval) providing the most stringent measurement on $H_0$ and the first estimation on $Omega_m$ and $w_0$ from bright standard siren. In the future, $1.3%$ measurement of $H_0=68$ km/s/Mpc and $28%$ measurement of $w_0=-1$ is possible from about $200$ GW190521-like sources.



rate research

Read More

The detection of GW170817 and the identification of its host galaxy have allowed for the first standard-siren measurement of the Hubble constant, with an uncertainty of $sim 14%$. As more detections of binary neutron stars with redshift measurement are made, the uncertainty will shrink. The dominating factors will be the number of joint detections and the uncertainty on the luminosity distance of each event. Neutron star black hole mergers are also promising sources for advanced LIGO and Virgo. If the black hole spin induces precession of the orbital plane, the degeneracy between luminosity distance and the orbital inclination is broken, leading to a much better distance measurement. In addition neutron star black hole sources are observable to larger distances, owing to their higher mass. Neutron star black holes could also emit electromagnetic radiation: depending on the black hole spin and on the mass ratio, the neutron star can be tidally disrupted resulting in electromagnetic emission. We quantify the distance uncertainty for a wide range of black hole mass, spin and orientations and find that the 1-$sigma$ statistical uncertainty can be up to a factor of $sim 10$ better than for a non-spinning binary neutron star merger with the same signal-to-noise ratio. The better distance measurement, the larger gravitational-wave detectable volume, and the potentially bright electromagnetic emission, imply that spinning black hole neutron star binaries can be the optimal standard siren sources as long as their astrophysical rate is larger than $O(10)$ Gpc$^{-3}$yr$^{-1}$, a value allowed by current astrophysical constraints.
The Hubble constant ($H_0$) measures the current expansion rate of the Universe, and plays a fundamental role in cosmology. Tremendous effort has been dedicated over the past decades to measure $H_0$. Notably, Planck cosmic microwave background (CMB) and the local Cepheid-supernovae distance ladder measurements determine $H_0$ with a precision of $sim 1%$ and $sim 2%$ respectively. A $3$-$sigma$ level of discrepancy exists between the two measurements, for reasons that have yet to be understood. Gravitational wave (GW) sources accompanied by electromagnetic (EM) counterparts offer a completely independent standard siren (the GW analogue of an astronomical standard candle) measurement of $H_0$, as demonstrated following the discovery of the neutron star merger, GW170817. This measurement does not assume a cosmological model and is independent of a cosmic distance ladder. The first joint analysis of the GW signal from GW170817 and its EM localization led to a measurement of $H_0=74^{+16}_{-8}$ km/s/Mpc (median and symmetric $68%$ credible interval). In this analysis, the degeneracy in the GW signal between the source distance and the weakly constrained viewing angle dominated the $H_0$ measurement uncertainty. Recently, Mooley et al. (2018) obtained tight constraints on the viewing angle using high angular resolution imaging of the radio counterpart of GW170817. Here we obtain a significantly improved measurement $H_0=68.9^{+4.7}_{-4.6}$ km/s/Mpc by using these new radio observations, combined with the previous GW and EM data. We estimate that 15 more localized GW170817-like events (comparable signal-to-noise ratio, favorable orientation), having radio images and light curve data, will potentially bring resolution to the tension between the Planck and Cepheid-supernova measurements, as compared to 50-100 GW events without such data.
In 2016, LIGO and Virgo announced the first observation of gravitational waves from a binary black hole merger, known as GW150914. To establish the confidence of this detection, large-scale scientific workflows were used to measure the events statistical significance. They used code written by the LIGO/Virgo and were executed on the LIGO Data Grid. The codes are publicly available, but there has not yet been an attempt to directly reproduce the results, although several analyses have replicated the analysis, confirming the detection. We attempt to reproduce the result presented in the GW150914 discovery paper using publicly available code on the Open Science Grid. We show that we can reproduce the main result but we cannot exactly reproduce the LIGO analysis as the original data set used is not public. We discuss the challenges we encountered and make recommendations for scientists who wish to make their work reproducible.
We study the prospects of future gravitational wave (GW) detectors in probing primordial black hole (PBH) binaries. We show that across a broad mass range from $10^{-5}M_odot$ to $10^7M_odot$, future GW interferometers provide a potential probe of the PBH abundance that is more sensitive than any currently existing experiment. In particular, we find that galactic PBH binaries with masses as low as $10^{-5}M_odot$ may be probed with ET, AEDGE and LISA by searching for nearly monochromatic continuous GW signals. Such searches could independently test the PBH interpretation of the ultrashort microlensing events observed by OGLE. We also consider the possibility of observing GWs from asteroid mass PBH binaries through graviton-photon conversion.
Following the detection of the GW170817 signal and its associated electromagnetic emissions, we discuss the prospects of the local Hubble parameter measurement using double neutron stars (DNSs). The kilonova emissions of GW170817 are genuinely unique in terms of the rapid evolution of color and magnitude and we expect that, for a good fraction $gtrsim 50%$ of the DNS events within $sim 200$Mpc, we could identify their host galaxies, using their kilonovae. At present, the estimated DNS merger rate $(1.5^{+3.2}_{-1.2})times 10^{-6} {rm Mpc^{-3} yr^{-1}}$ has a large uncertainty. But, if it is at the high end, we could measure the local Hubble parameter $H_L$ with the level of $Delta H_L/H_Lsim 0.042$ ($1sigma$ level), after the third observational run (O3). This accuracy is four times better than that obtained from GW170817 alone, and we will be able to examine the Hubble tension at $2.1sigma$ level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا