Do you want to publish a course? Click here

High metal content of highly accreting quasars

177   0   0.0 ( 0 )
 Added by Marzena Sniegowska
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of UV spectra of 13 quasars believed to belong to extreme Population A (xA) quasars, aimed at the estimation of the chemical abundances of the broad line emitting gas. Metallicity estimates for the broad line emitting gas of quasars are subject to a number of caveats, although present data suggest the possibility of an increase along the quasar main sequence along with prominence of optical Fe II emission. Extreme Population A sources with the strongest Fe II emission offer several advantages with respect to the quasar general population, as their optical and UV emission lines can be interpreted as the sum of a low-ionization component roughly at quasar rest frame (from virialized gas), plus a blueshifted excess (a disk wind), in different physical conditions. Specifically, in terms of ionization parameter, cloud density, metallicity and column density. Capitalizing on these results, we analyze the component at rest frame and the blueshifted one, exploiting the dependence (of several intensity line ratios on metallicity $Z$). We find that the validity of intensity line ratios as metallicity indicators depends on the physical conditions. We apply the measured diagnostic ratios to estimate the physical properties of sources such as density, ionization, and metallicity of the gas. Our results confirm that the two regions (the low-ionization component and the blue-shifted excess) of different dynamical conditions also show different physical conditions and suggest metallicity values that are high, and probably the highest along the quasar main sequence, with $Z gtrsim 10 Z_{odot}$. We found some evidence of an overabundance of Aluminium with respect to Carbon, possibly due to selective enrichment of the broad line emitting gas by supernova ejecta.



rate research

Read More

We propose a method to identify quasars radiating closest to the Eddington limit, defining primary and secondary selection criteria in the optical, UV and X-ray spectral range based on the 4D eigenvector 1 formalism. We then show that it is possible to derive a redshift-independent estimate of luminosity for extreme Eddington ratio sources. Using preliminary samples of these sources in three redshift intervals (as well as two mock samples), we test a range of cosmological models. Results are consistent with concordance cosmology but the data are insufficient for deriving strong constraints. Mock samples indicate that application of the method proposed in this paper using dedicated observations would allow to set stringent limits on Omega_M and significant constraints on Omega_Lambda.
Highly accreting quasars are characterized by distinguishing properties in the 4D eigenvector 1 parameter space that make them easily recognizable over a broad range range of redshift and luminosity. The 4D eigenvector 1 approach allows us to define selection criteria that go beyond the restriction to Narrow Line Seyfert 1s identified at low redshift. These criteria are probably able to isolate sources with a defined physical structure i.e., a geometrically thick, optically thick advection-dominated accretion disk (a slim disk). We stress that the importance of highly accreting quasars goes beyond the understanding of the details of their physics: their Eddington ratio is expected to saturate toward values of order unity, making them possible cosmological probes.
Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper we present X-ray observations of eleven extremely red quasars (ERQs) with $L_{rm bol}sim 10^{47}$ erg s$^{-1}$ at $z=1.5-3.2$ with evidence for high-velocity ($v > 1000$ km s$^{-1}$) [OIII]$lambda$5007AA outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect ten out of eleven extremely red quasars available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of $N_{rm H}approx 10^{23}$ cm$^{-2}$, including four Compton-thick candidates ($N_{rm H} > 10^{24}$ cm$^{-2}$). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of $N_{rm H}sim 8times 10^{23}$ cm$^{-2}$. The absorption-corrected (intrinsic) $2-10$ keV X-ray luminosity of the stack is $2.7times 10^{45}$ erg s$^{-1}$, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.
Radio sources at the highest redshifts can provide unique information on the first massive galaxies and black holes, the densest primordial environments, and the epoch of reionization. The number of astronomical objects identified at z>6 has increased dramatically over the last few years, but previously only three radio-loud (R2500>10) sources had been reported at z>6, with the most distant being a quasar at z=6.18. Here we present the discovery and characterization of P172+18, a radio-loud quasar at z=6.823. This source has an MgII-based black hole mass of ~3x10^8 Msun and is one of the fastest accreting quasars, consistent with super-Eddington accretion. The ionized region around the quasar is among the largest measured at these redshifts, implying an active phase longer than the average lifetime of the z>6 quasar population. From archival data, there is evidence that its 1.4 GHz emission has decreased by a factor of two over the last two decades. The quasars radio spectrum between 1.4 and 3.0 GHz is steep (alpha=-1.31) and has a radio-loudness parameter R2500~90. A second steep radio source (alpha=-0.83) of comparable brightness to the quasar is only 23.1 away (~120 kpc at z=6.82; projection probability <2%), but shows no optical or near-infrared counterpart. Further follow-up is required to establish whether these two sources are physically associated.
Galaxy groups host the majority of matter and more than half of all the galaxies in the Universe. Their hot ($10^7$ K), X-ray emitting intra-group medium (IGrM) reveals emission lines typical of many elements synthesized by stars and supernovae. Because their gravitational potentials are shallower than those of rich galaxy clusters, groups are ideal targets for studying, through X-ray observations, feedback effects, which leave important marks on their gas and metal contents. Here, we review the history and present status of the chemical abundances in the IGrM probed by X-ray spectroscopy. We discuss the limitations of our current knowledge, in particular due to uncertainties in the modeling of the Fe-L shell by plasma codes, and coverage of the volume beyond the central region. We further summarize the constraints on the abundance pattern at the group mass scale and the insight it provides to the history of chemical enrichment. Parallel to the observational efforts, we review the progress made by both cosmological hydrodynamical simulations and controlled high-resolution 3D simulations to reproduce the radial distribution of metals in the IGrM, the dependence on system mass from group to cluster scales, and the role of AGN and SN feedback in producing the observed phenomenology. Finally, we highlight future prospects in this field, where progress will be driven both by a much richer sample of X-ray emitting groups identified with eROSITA, and by a revolution in the study of X-ray spectra expected from micro-calorimeters onboard XRISM and ATHENA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا