Do you want to publish a course? Click here

CoKe: Localized Contrastive Learning for Robust Keypoint Detection

113   0   0.0 ( 0 )
 Added by Yutong Bai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Todays most popular approaches to keypoint detection involve very complex network architectures that aim to learn holistic representations of all keypoints. In this work, we take a step back and ask: Can we simply learn a local keypoint representation from the output of a standard backbone architecture? This will help make the network simpler and more robust, particularly if large parts of the object are occluded. We demonstrate that this is possible by looking at the problem from the perspective of representation learning. Specifically, the keypoint kernels need to be chosen to optimize three types of distances in the feature space: Features of the same keypoint should be similar to each other, while differing from those of other keypoints, and also being distinct from features from the background clutter. We formulate this optimization process within a framework, which we call CoKe, which includes supervised contrastive learning. CoKe needs to make several approximations to enable representation learning process on large datasets. In particular, we introduce a clutter bank to approximate non-keypoint features, and a momentum update to compute the keypoint representation while training the feature extractor. Our experiments show that CoKe achieves state-of-the-art results compared to approaches that jointly represent all keypoints holistically (Stacked Hourglass Networks, MSS-Net) as well as to approaches that are supervised by detailed 3D object geometry (StarMap). Moreover, CoKe is robust and performs exceptionally well when objects are partially occluded and significantly outperforms related work on a range of diverse datasets (PASCAL3D+, MPII, ObjectNet3D).



rate research

Read More

Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its transformation should share similar semantic clustering assignment. However, the representation features could be quite different even they are assigned to the same cluster since softmax function is only sensitive to the maximum value. This may result in high intra-class diversities in the representation feature space, which will lead to unstable local optimal and thus harm the clustering performance. To address this drawback, we proposed Deep Robust Clustering (DRC). Different from existing methods, DRC looks into deep clustering from two perspectives of both semantic clustering assignment and representation feature, which can increase inter-class diversities and decrease intra-class diversities simultaneously. Furthermore, we summarized a general framework that can turn any maximizing mutual information into minimizing contrastive loss by investigating the internal relationship between mutual information and contrastive learning. And we successfully applied it in DRC to learn invariant features and robust clusters. Extensive experiments on six widely-adopted deep clustering benchmarks demonstrate the superiority of DRC in both stability and accuracy. e.g., attaining 71.6% mean accuracy on CIFAR-10, which is 7.1% higher than state-of-the-art results.
Self-supervised learning has recently shown great potential in vision tasks via contrastive learning, which aims to discriminate each image, or instance, in the dataset. However, such instance-level learning ignores the semantic relationship between instances and repels the anchor equally from the semantically similar samples, termed as false negatives. In this work, we first empirically highlight that the unfavorable effect from false negatives is more significant for the datasets containing images with more semantic concepts. To address the issue, we introduce a novel incremental false negative detection for self-supervised contrastive learning. Following the training process, when the encoder is gradually better-trained and the embedding space becomes more semantically structural, our method incrementally detects more reliable false negatives. Subsequently, during contrastive learning, we discuss two strategies to explicitly remove the detected false negatives. Extensive experiments show that our proposed method outperforms other self-supervised contrastive learning frameworks on multiple benchmarks within a limited compute.
In object detection, keypoint-based approaches often suffer a large number of incorrect object bounding boxes, arguably due to the lack of an additional look into the cropped regions. This paper presents an efficient solution which explores the visual patterns within each cropped region with minimal costs. We build our framework upon a representative one-stage keypoint-based detector named CornerNet. Our approach, named CenterNet, detects each object as a triplet, rather than a pair, of keypoints, which improves both precision and recall. Accordingly, we design two customized modules named cascade corner pooling and center pooling, which play the roles of enriching information collected by both top-left and bottom-right corners and providing more recognizable information at the central regions, respectively. On the MS-COCO dataset, CenterNet achieves an AP of 47.0%, which outperforms all existing one-stage detectors by at least 4.9%. Meanwhile, with a faster inference speed, CenterNet demonstrates quite comparable performance to the top-ranked two-stage detectors. Code is available at https://github.com/Duankaiwen/CenterNet.
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness In this work, we improve robustness-aware self-supervised pre-training by learning representations that are consistent under both data augmentations and adversarial perturbations. Our approach leverages a recent contrastive learning framework, which learns representations by maximizing feature consistency under differently augmented views. This fits particularly well with the goal of adversarial robustness, as one cause of adversarial fragility is the lack of feature invariance, i.e., small input perturbations can result in undesirable large changes in features or even predicted labels. We explore various options to formulate the contrastive task, and demonstrate that by injecting adversarial perturbations, contrastive pre-training can lead to models that are both label-efficient and robust. We empirically evaluate the proposed Adversarial Contrastive Learning (ACL) and show it can consistently outperform existing methods. For example on the CIFAR-10 dataset, ACL outperforms the previous state-of-the-art unsupervised robust pre-training approach by 2.99% on robust accuracy and 2.14% on standard accuracy. We further demonstrate that ACL pre-training can improve semi-supervised adversarial training, even when only a few labeled examples are available. Our codes and pre-trained models have been released at: https://github.com/VITA-Group/Adversarial-Contrastive-Learning.
In this work, we train a network to simultaneously perform segmentation and pixel-wise Out-of-Distribution (OoD) detection, such that the segmentation of unknown regions of scenes can be rejected. This is made possible by leveraging an OoD dataset with a novel contrastive objective and data augmentation scheme. By combining data including unknown classes in the training data, a more robust feature representation can be learned with known classes represented distinctly from those unknown. When presented with unknown classes or conditions, many current approaches for segmentation frequently exhibit high confidence in their inaccurate segmentations and cannot be trusted in many operational environments. We validate our system on a real-world dataset of unusual driving scenes, and show that by selectively segmenting scenes based on what is predicted as OoD, we can increase the segmentation accuracy by an IoU of 0.2 with respect to alternative techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا