Do you want to publish a course? Click here

Radial profile of heavy quarks in jets in high-energy nuclear collisions

125   0   0.0 ( 0 )
 Added by Sa Wang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In high energy nuclear collisions, heavy flavor tagged jets are useful hard probes to study the properties of the quark-gluon plasma (QGP). In this talk, we present the first theoretical prediction of the $D^0$ meson radial distributions in jets relative to the jet axis both in p+p and Pb+Pb collisions at $5.02$ TeV, it shows a nice agreement with the available experimental data. The in-medium jet evolution in the study is described by a Monte Carlo transport model which has been incorporated with the initial events as input provided by the next-to-leading order (NLO) plus parton shower (PS) event generator SHERPA. In such evolution process, both elastic and inelastic parton energy loss in the hot and dense medium are taken into account. Within this same simulation framework, we predict different modification patterns of the radial profile of charm and bottom quarks in jets in Pb+Pb collisions: jet quenching effect will lead the charm quarks diffuse to lager radius while lead the bottom quarks distributed closer to jet axis.



rate research

Read More

69 - Sa Wang , Wei Dai , Ben-Wei Zhang 2020
Angular correlations between heavy quark (HQ) and its tagged jet are potentially new tools to gain insight into the in-medium partonic interactions in relativistic heavy-ion collisions. In this work, we present the first theoretical study on the radial profiles of B mesons in jets in Pb+Pb collisions at the LHC. The initial production of bottom quark tagged jet in p+p is computed by SHERPA which matches the next-to-leading order matrix elements with contributions of parton shower, whereas the massive quark traversing the QGP described by a Monte Carlo model SHELL which can simultaneously simulate light and heavy flavor in-medium energy loss within the framework of Langevin evolution. In p+p collisions, we find that at lower $p_T^Q$ the radial profiles of heavy flavors in jets are sensitive to the heavy quark mass. In $0-10%$ Pb+Pb collisions at $rm sqrt{s_{NN}}=5.02$ TeV, we observe an inverse modification pattern of the B mesons radial profiles in jets at $rm 4<p_T^Q<20$ GeV compared to that of D mesons: the jet quenching effects narrow the jet radial profile of B mesons in jets while broaden that of D mesons in jets. We find that in A+A collisions, the contribution dissipated from the higher $rm p_T^Q> 20$ GeV region naturally has a narrower initial distribution and consequently leads to a narrower modification pattern of radial profile; however the diffusion nature of the heavy flavor in-medium interactions will give rise to a broader modification pattern of radial profile. These two effects consequently compete and offset with each other, and the b quarks in jets benefit more from the former and suffers less diffusion effect compared to that of c quarks in jets. These findings can be tested in the future experimental measurements at the LHC to gain better understanding of the mass effect of jet quenching.
We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy ion collisions at sqrt(s)NN = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynamics in the causal Israel-Stewart framework in 3+1 dimensions with an initial Bjorken flow profile. We consider and discuss different definitions of vorticity which are relevant in relativistic hydrodynamics. After demonstrating the excellent capabilities of our code, which proves to be able to reproduce Gubser flow up to 8 fm/c, we show that, with the initial conditions needed to reproduce the measured directed flow in peripheral collisions corresponding to an average impact parameter b=11.6 fm and with the Bjorken flow profile for a viscous Quark Gluon Plasma with eta/s=0.1 fixed, a vorticity of the order of some 10^{-2} c/fm can develop at freezeout. The ensuing polarization of Lambda baryons does not exceed 1.4% at midrapidity. We show that the amount of developed directed flow is sensitive to both the initial angular momentum of the plasma and its viscosity.
202 - G. Aarts , J. Aichelin , C. Allton 2016
Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the quark-gluon plasma with heavy quarks}, which was held in October 2016 in Leiden, the Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma.
We present theoretical approaches to high energy nuclear collisions in detail putting a special emphasis on technical aspects of numerical simulations. Models include relativistic hydrodynamics, Monte-Carlo implementation of k_T-factorization formula, jet quenching in expanding fluids, a hadronic transport model and the Vlasov equation for colored particles.
282 - Peng Yang , Lin Li , Yu Zhou 2021
Radial flow can be directly extracted from the azimuthal distribution of mean transverse rapidity. We apply the event-plane method and the two-particle correlation method to estimate the anisotropic Fourier coefficient of the azimuthal distribution of mean transverse rapidity. Using the event sample generated by a multiphase transport model with string melting, we show that both methods are effective. For the two-particle correlation method to be reliable, the mean number of particles in an azimuthal bin must be above a certain threshold. Using these two methods, anisotropic radial flow can be estimated in a model-independent way in relativistic heavy-ion collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا