$mathrm{e}^+$$mathrm{e}^-$ Beam-beam Parameter Study for a TeV-scale PWFA Linear Collider


Abstract in English

We perform a beam-beam parameter study for a TeV-scale PWFA (particle-driven plasma wakefield acceleration) $mathrm{e}^+$$mathrm{e}^-$ linear collider using GUINEA-PIG simulations. The study shows that the total luminosity follows the $1/sqrt{sigma_z}$-scaling predicted by beamstrahlung theory, where $sigma_z$ is the rms beam length, which is advantageous for PWFA, as short beam lengths are preferred. We also derive a parameter set for a 3 TeV PWFA linear collider with main beam parameters optimised for luminosity and luminosity spread introduced by beamstrahlung. Lastly, the study also compare the performance for scenarios with reduced positron beam charge at 3 TeV and 14 TeV with CLIC parameters.

Download