Do you want to publish a course? Click here

Ternary and Binary Representation of Coordinate and Momentum in Quantum Mechanics

130   0   0.0 ( 0 )
 Added by Mikhail Ivanov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

To simulate a quantum system with continuous degrees of freedom on a quantum computer based on quantum digits, it is necessary to reduce continuous observables (primarily coordinates and momenta) to discrete observables. We consider this problem based on expanding quantum observables in series in powers of two and three analogous to the binary and ternary representations of real numbers. The coefficients of the series (digits) are, therefore, Hermitian operators. We investigate the corresponding quantum mechanical operators and the relations between them and show that the binary and ternary expansions of quantum observables automatically leads to renormalization of some divergent integrals and series (giving them finite values).



rate research

Read More

We consider relativistic coherent states for a spin-0 charged particle that satisfy the next additional requirements: (i) the expected values of the standard coordinate and momentum operators are uniquely related to the real and imaginary parts of the coherent state parameter; (ii) these states contain only one charge component. Three cases are considered: free particle, relativistic rotator, and particle in a constant homogeneous magnetic field. For the rotational motion of the two latter cases, such a description leads to the appearance of the so-called nonlinear coherent states.
The Newton--Hooke duality and its generalization to arbitrary power laws in classical, semiclassical and quantum mechanics are discussed. We pursue a view that the power-law duality is a symmetry of the action under a set of duality operations. The power dual symmetry is defined by invariance and reciprocity of the action in the form of Hamiltons characteristic function. We find that the power-law duality is basically a classical notion and breaks down at the level of angular quantization. We propose an ad hoc procedure to preserve the dual symmetry in quantum mechanics. The energy-coupling exchange maps required as part of the duality operations that take one system to another lead to an energy formula that relates the new energy to the old energy. The transformation property of {the} Green function satisfying the radial Schrodinger equation yields a formula that relates the new Green function to the old one. The energy spectrum of the linear motion in a fractional power potential is semiclassically evaluated. We find a way to show the Coulomb--Hooke duality in the supersymmetric semiclassical action. We also study the confinement potential problem with the help of the dual structure of a two-term power potential.
168 - A.V. Turbiner , E. Shuryak 2021
It is shown that for one-dimensional anharmonic oscillator with potential $V(x)= a x^2+ldots=frac{1}{g^2},hat{V}(gx)$ (and for perturbed Coulomb problem $V(r)=frac{alpha}{r} + ldots = g,tilde{V}(gr)$) the Perturbation Theory in powers of coupling constant $g$ (weak coupling regime) and semiclassical expansion in powers of $hbar^{1/2}$ for energies coincide. %The same is true for strong coupling regime expansion in inverse fractional powers in $g$ of energy. It is related to the fact that the dynamics developed in two spaces: $x (r)$-space and in $gx (gr)$ space, leads to the same energy spectra. The equations which govern dynamics in these two spaces, the Riccati-Bloch equation and the Generalized Bloch(GB) equation, respectively, are presented. It is shown that perturbation theory for logarithmic derivative of wave function in $gx (gr)$ space leads to true semiclassical expansion in powers of $hbar^{1/2}$ and corresponds to flucton calculus for density matrix in path integral formalism in Euclidean (imaginary) time.
In quantum mechanics textbooks the momentum operator is defined in the Cartesian coordinates and rarely the form of the momentum operator in spherical polar coordinates is discussed. Consequently one always generalizes the Cartesian prescription to other coordinates and falls in a trap. In this work we introduce the difficulties one faces when the question of the momentum operator in general curvilinear coordinates arises. We have tried to elucidate the points related to the definition of the momentum operator taking spherical polar coordinates as our specimen coordinate system and proposed an elementary method in which we can ascertain the form of the momentum operator in general coordinate systems.
After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا