Do you want to publish a course? Click here

QFT treatment of a bound state in a thermal gas

242   0   0.0 ( 0 )
 Added by Subhasis Samanta
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We investigate how to include bound states in a thermal gas in the context of quantum field theory (QFT). To this end, we use for definiteness a scalar QFT with a $varphi^{4}$ interaction, where the field $varphi$ represents a particle with mass $m$. A bound state of the $varphi$-$varphi$ type is created when the coupling constant is negative and its modulus is larger than a certain critical value. We investigate the contribution of this bound state to the pressure of the thermal gas of the system by using the $S$-matrix formalism involving the derivative of the phase-shift scattering. Our analysis, which is based on an unitarized one-loop resumed approach which renders the theory finite and well-defined for each value of the coupling constant, leads to following main results: (i) We generalize the phase-shift formula in order to take into account within a unique formal approach the two-particle interaction as well as the bound state (if existent). (ii) textit{On the one hand}, the number density of the bound state in the system at a certain temperature $T$ is obtained by the standard thermal integral; this is the case for any binding energy, even if it is much smaller than the temperature of the thermal gas. (iii) textit{On the other hand}, the contribution of the bound state to the total pressure is partly -- but not completely -- canceled by the two-particle interaction contribution to the pressure. (iv) The pressure as function of the coupling constant is textit{continuous} also at the critical coupling for the bound state formation: the jump in pressure due to the sudden appearance of the bound state is exactly canceled by an analogous jump (but with opposite sign) of the interaction contribution to the pressure.



rate research

Read More

We show that large n-particle production rates derived in the semiclassical Higgsplosion limit of scalar field theoretical models with spontaneous symmetry breaking, are consistent with general principles of localizable quantum field theory. The strict localizability criterium of Jaffe defines quantum fields as operator-valued distributions acting on test functions that are localized in finite regions of space-time. The requirement of finite support of test functions in space-time ensures the causality property of QFT. The corresponding localizable fields need not be tempered distributions, and they fit well into the framework of local quantum field theory.
67 - Valentin V. Khoze 2017
In a scalar theory which we use as a simplified model for the Higgs sector, we adopt the semiclassical formalism of Son for computations of $n$-particle production cross-sections in the high-multiplicity $nto infty$ weak-coupling $lambda to 0$ regime with the value of $lambda n$ held fixed and large. The approach relies on the use of singular classical solutions to a certain boundary value problem. In the past this formalism has been successfully used and verified in computations of perturbative multi-particle processes at tree-level, and also at the next-to-leading order level in the small $lambda n$ expansion near the multi-particle mass threshold. We apply this singular solutions formalism in the regime of ultra-high multiplicities where $lambda n gg 1$, and compute the leading positive $sim n,sqrt{lambda n}$ contribution to the exponent of the multi-particle rate in this large $lambda n$ limit. The computation is carried out near the multi-particle mass threshold where the multiplicity $n$ approaches its maximal value allowed by kinematics. This calculation relies on the idea of Gorsky and Voloshin to use a thin wall approximation for the singular solutions that resemble critical bubbles. This approximation is justified in precisely the high-multiplicity $sqrt{lambda n} to infty$ regime of interest. Based on our results we show that the scalar theory with a spontaneous symmetry breaking used here as a simplified model for the Higgs sector, is very likely to realise the high-energy Higgsplosion phenomenon.
338 - B.Bambah , C.Mukku 2003
A quantum field theoretical model for the dynamics of the disoriented chiral condensate is presented. A unified approach to relate the quantum field theory directly to the formation, decay and signals of the DCC and its evolution is taken. We use a background field analysis of the O(4) sigma model keeping one-loop quantum corrections (quadratic order in the fluctuations). An evolution of the quantum fluctuations in an external, expanding metric which simulates the expansion of the plasma, is carried out. We examine, in detail, the amplification of the low momentum pion modes with two competing effects, the expansion rate of the plasma and the transition rate of the vacuum configuration from a metastable state into a stable state.We show the effect of DCC formation on the multiplicity distributions and the Bose-Einstein correlations.
Recently a formalism for a direct treatment of the Faddeev equation for the three-nucleon bound state in three dimensions has been proposed. It relies on an operator representation of the Faddeev component in the momentum space and leads to a finite set of coupled equations for scalar functions which depend only on three variables. In this paper we provide further elements of this formalism and show the first numerical results for chiral NNLO nuclear forces.
The formation of meta-stable dark matter bound states in coannihilating scenarios could efficiently occur through the scattering with a variety of Standard Model bath particles, where light bosons during the electroweak cross over or even massless photons and gluons are exchanged in the t-channel. The amplitudes for those higher-order processes, however, are divergent in the collinear direction of the in- and out-going bath particles if the mediator is massless. To address the issue of collinear divergences, we derive the bound-state formation collision term in the framework of non-equilibrium quantum field theory. The main result is an expression for a more general cross section, which allows to compute higher-order bound-state formation processes inside the primordial plasma background in a comprehensive manner. Based on this result, we show that next-to-leading order contributions, including the bath-particle scattering, are i) collinear finite and ii) generically dominate over the on-shell emission for temperatures larger than the absolute value of the binding energy. Based on a simplified model, we demonstrate that the impact of these new effects on the thermal relic abundance is significant enough to make it worthwhile to study more realistic coannihilation scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا