Do you want to publish a course? Click here

Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206

52   0   0.0 ( 0 )
 Added by Ancla M\\\"uller
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Jellyfish galaxies have long tails of gas that is stripped from the disc by ram pressure due to the motion of galaxies in the intracluster medium in galaxy clusters. We present the first measurement of the magnetic field strength and orientation within the disc and the (90$,$kpc-long) $rm Halpha$-emitting tail of the jellyfish galaxy JO206. The tail has a large-scale magnetic field ($>4.1,mu$G), a steep radio spectral index ($alpha sim -2.0$), indicating an aging of the electrons propagating away from the star-forming regions, and extremely high fractional polarisation ($>50,$%), indicating low turbulent motions. The magnetic field vectors are aligned with (parallel to) the direction of the ionised-gas tail and stripping direction. High-resolution simulations of a large, cold gas cloud that is exposed to a hot, magnetised turbulent wind show that the high fractional polarisation and the ordered magnetic field can be explained by accretion of draped magnetised plasma from the hot wind that condenses onto the external layers of the tail, where it is adiabatically compressed and sheared. The ordered magnetic field, preventing heat and momentum exchange, may be a key factor in allowing in-situ star formation in the tail.



rate research

Read More

We present VLA HI observations of JO206, a prototypical ram-pressure stripped galaxy in the GASP sample. This massive galaxy (M$_{ast} =$ 8.5 $times$ 10$^{10}$ M$_{odot}$) is located at a redshift of $z =$ 0.0513, near the centre of the low-mass galaxy cluster, IIZw108 ($sigma sim575$ km/s). JO206 is characterised by a long tail ($geq$90 kpc) of ionised gas stripped away by ram-pressure. We find a similarly long HI tail in the same direction as the ionised gas tail and measure a total HI mass of $3.2 times 10^{9}$ M$_{odot}$. This is about half the expected HI mass given the stellar mass and surface density of JO206. A total of $1.8 times 10^{9}$ M$_{odot}$ (60%) of the detected HI is in the gas stripped tail. An analysis of the star formation rate shows that the galaxy is forming more stars compared to galaxies with the same stellar and HI mass. On average we find a HI gas depletion time of $sim$0.5 Gyr which is about four times shorter than that of normal spiral galaxies. We performed a spatially resolved analysis of the relation between star formation rate density and gas density in the disc and tail of the galaxy at the resolution of our HI data. The star formation efficiency of the disc is about 10 times higher than that of the tail at fixed HI surface densities. Both the inner and outer parts of JO206 show an enhanced star formation compared to regions of similar HI surface density in field galaxies. The enhanced star formation is due to ram-pressure stripping during the galaxys first infall into the cluster.
We present HI observations of the jellyfish galaxy, JO201. This massive galaxy (M$_{ast} = 3.5 times 10^{10}$ M$_odot$) is falling along the line-of-sight towards the centre of a rich cluster (M$_{200} sim 1.6 times 10^{15}$ M$_odot$, $sigma_{cl} sim 982$ km/s) at a high velocity $geq$3363 km/s. Its H$alpha$ emission shows a $sim$40 kpc tail confined closely to its stellar disc and a $sim$100 kpc tail extending further out. We find HI emission coinciding only with the shorter clumpy H$alpha$ tail. In total, we measure an HI mass of M$_{rm HI} = 1.65 times 10^{9}$ M$_odot$, which is about 60% lower than expected based on its stellar mass and stellar surface density. We compared JO201 to another jellyfish in the GASP sample, JO206 (of similar mass but residing in a 10$times$ less massive cluster), and find that they are similarly HI-deficient. Of the total HI mass in JO201, about 30% lies outside the galaxy disc in projection. This HI fraction is probably a lower limit since most of the HI is redshifted relative to the stellar disc and could be outside the disc. The global star formation rate (SFR) analysis of JO201 suggests that its observed SFR would be expected if it had 10$times$ its current HI mass. The disc is the main contributor of the high star formation efficiency at a given HI gas density for both galaxies, but their tails also show higher star formation efficiencies compared to the outer regions of field galaxies. Generally, we find that JO201 and JO206 are similar based on their HI content, stellar mass and star formation rate. This finding is unexpected considering their different environments. A toy model comparing the ram pressure of the ICM versus the restoring forces of these galaxies suggests that the ram pressure strength exerted on them could be comparable if we consider their 3D orbital velocities and radial distances relative to the clusters.
We present the first high-resolution map of the cold molecular gas distribution, as traced by CO(2-1) emission with ALMA, in a prominent ram pressure stripped tail. The Norma cluster galaxy ESO 137-001 is undergoing a strong interaction with the surrounding intra-cluster medium and is one of the nearest jellyfish galaxies with a long multi-phase tail. We have mapped the full extent of the tail at 1 (350 pc) angular resolution and found a rich distribution of mostly compact CO regions extending to nearly 60 kpc in length and 25 kpc in width. In total about 10^9 M_sun of molecular gas was detected. The CO features are found predominantly at the heads of numerous small-scale (~ 1.5 kpc) fireballs (i.e., star-forming clouds with linear streams of young stars extending toward the galaxy) but also of large-scale (~ 8 kpc) super-fireballs, and double-sided fireballs that have additional diffuse ionized gas tails extending in the direction opposite to the stellar tails. The new data help to shed light on the origin of the molecular tail - CO filaments oriented in the direction of the tail with only diffuse associated Halpha emission are likely young molecular features formed in situ, whereas other large CO features tilted with respect to the tail may have originated from the densest gas complexes that were pushed gradually away from the disk. The ALMA observations of ESO 137-001, together with observations from HST, Chandra and VLT/MUSE, offer the most complete view of a spectacular ram pressure stripped tail to date.
91 - Woojin Kwon 2018
We have carried out polarimetric observations with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostellar system L1448 IRS 2, which is a proto-binary embedded within a flattened, rotating structure, and for which a hint of a central disk has been suggested, but whose magnetic fields are aligned with the bipolar outflow on the cloud core scale. Our high sensitivity and high resolution ($sim 100$ au) observations show a clear hourglass magnetic field morphology centered on the protostellar system, but the central pattern is consistent with a toroidal field indicative of a circumstellar disk, although other interpretations are also possible, including field lines dragged by an equatorial accretion flow into a configuration parallel to the midplane. If a relatively large disk does exist, it would suggest that the magnetic braking catastrophe is averted in this system, not through a large misalignment between the magnetic and rotation axes, but rather through some other mechanisms, such as non-ideal magneto-hydrodynamic effects and/or turbulence. We have also found a relationship of decreasing polarization fractions with intensities and the various slopes of this relationship can be understood as multiple polarization mechanisms and/or depolarization from a changing field morphology. In addition, we found a prominent clumpy depolarization strip crossing the center perpendicular to the bipolar outflow. Moreover, a rough estimate of the magnetic field strength indicates that the field is strong enough to hinder formation of a rotationally supported disk, which is inconsistent with the feature of a central toroidal field.
We present JVLA-C observations of the HI gas in JO204, one of the most striking jellyfish galaxies from the GASP survey. JO204 is a massive galaxy in the low-mass cluster Abell 957 at z=0.04243. The HI map reveals an extended 90 kpc long ram-pressure stripped tail of neutral gas, stretching beyond the 30 kpc long ionized gas tail and pointing away from the cluster center. The HI mass seen in emission is (1.32 $ pm 0.13) times 10^{9} rm M_{odot}$, mostly located in the tail. The northern part of the galaxy disk has retained some HI gas, while the southern part has already been completely stripped and displaced into an extended unilateral tail. Comparing the distribution and kinematics of the neutral and ionized gas in the tail indicates a highly turbulent medium. Moreover, we observe associated HI absorption against the 11 mJy central radio continuum source with an estimated HI absorption column density of 3.2 $times 10^{20}$ cm$^{-2}$. The absorption profile is significantly asymmetric with a wing towards higher velocities. We modelled the HI absorption by assuming that the HI and ionized gas disks have the same kinematics in front of the central continuum source, and deduced a wider absorption profile than observed. The observed asymmetric absorption profile can therefore be explained by a clumpy, rotating HI gas disk seen partially in front of the central continuum source, or by ram-pressure pushing the neutral gas towards the center of the continuum source, triggering the AGN activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا