No Arabic abstract
In a recent work, new two-dimensional materials, the monolayer MoSi$_{2}$N$_{4}$ and WSi$_{2}$N$_{4}$, have been successfully synthesized in experiment, and several other monolayer materials with the similar structure, such as MoSi$_{2}$As$_{4}$, have been predicted [{color{blue}Science 369, 670-674 (2020)}]. Here, based on first-principles calculations and theoretical analysis, we investigate the electronic and optical properties of monolayer MoSi$_{2}$N$_{4}$, WSi$_{2}$N$_{4}$ and MoSi$_{2}$As$_{4}$. We show that these materials are semiconductors, with a pair of Dirac-type valleys located at the corners of the hexagonal Brillouin zone. Due to the broken inversion symmetry and the effect of spin-orbit coupling, the valley fermions manifest spin-valley coupling, valley-contrasting Berry curvature, and valley-selective optical circular dichroism. We also construct the low-energy effective model for the valleys, calculate the spin Hall conductivity and the permittivity, and investigate the strain effect on the band structure. Our result reveals interesting valley physics in monolayer MoSi$_{2}$N$_{4}$, WSi$_{2}$N$_{4}$ and MoSi$_{2}$As$_{4}$, suggesting their great potential for valleytronics and spintronics applications.
By a combined study with first-principles calculations and symmetry analysis, we theoretically investigate the electronic properties of monolayer MoSi$_2$N$_4$. While the spin-orbital coupling results in bands splitting, the horizontal mirror symmetry locks the spin polarization along z-direction. In addition, a three-band tight-binding model is constructed to describe the low-energy quasi-particle states of monolayer MoSi$_2$N$_4$, which can be generalized to strained MoSi$_2$N$_4$ and its derivatives. The calculations using the tight-binding model show an undamped $sqrt{q}$-dependent plasmon mode that agrees well with the results of first-principles calculations. Our model can be extended to be suitable for future theoretical and numerical studies of low-energy properties in MoSi$_2$N$_4$ family materials. Furthermore, the study of electronic properties of monolayer MoSi$_2$N$_4$ paves a way for its applications in spintronics and plasmonics.
Electronic correlations could have significant impact on the material properties. They are typically pronounced for localized orbitals and enhanced in low-dimensional systems, so two-dimensional (2D) transition metal compounds could be a good platform to study their effects. Recently, a new class of 2D transition metal compounds, the MoSi$_2$N$_4$-family materials, have been discovered, and some of them exhibit intrinsic magnetism. Here, taking monolayer VSi$_{2}$P$_{4}$ as an example from the family, we investigate the impact of correlation effects on its physical properties, based on the first-principles calculations. We find that different correlation strength can drive the system into a variety of interesting ground states, with rich magnetic, topological and valley features. With increasing correlation strength, while the system favors a ferromagnetic semiconductor state for most cases, the magnetic anisotropy and the band gap type undergo multiple transitions, and in the process, the band edges can form single, two or three valleys for electrons or holes. Remarkably, there is a quantum anomalous Hall (QAH) insulator phase, which has a unit Chern number. The boundary of the QAH phase correspond to the half-valley semimetal state with fully valley polarized bulk carriers. We further show that for phases with the out-of-plane magnetic anisotropy, the interplay between spin-orbit coupling and orbital character of valleys enable an intrinsic valley polarization for electrons but not for holes. This electron valley polarization can be switched by reversing the magnetization direction, providing a new route of magnetic control of valleytronics. Our result sheds light on the possible role of correlation effects in the 2D transition metal compounds, and it will open new perspectives for spintronic, valleytronic and topological nanoelectronic applications based on these materials.
Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multi-component compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe$_{4}$As$_{4}$ from a high temperature, quaternary liquid solution rich in iron and arsenic (FeAs self-flux). Temperature dependent resistance and magnetization measurements are emphasized, in addition to the x-ray diffraction, to detect inter-grown CaKFe$_{4}$As$_{4}$, CaFe$_{2}$As$_{2}$ and KFe$_{2}$As$_{2}$ within, what appear to be, single crystals. Guided by the rules of phase equilibria and these data, we adjusted growth parameters to suppress formation of the impurity phases. The resulting optimized procedure yielded phase-pure single crystals of CaKFe$_{4}$As$_{4}$. This optimization process offers insight into the growth of quaternary compounds and a glimpse of the four-component phase diagram in the pseudo-ternary FeAs-CaFe$_{2}$As$_{2}$-KFe$_{2}$As$_{2}$ system.
A N=4 supersymmetric matrix KP hierarchy is proposed and a wide class of its reductions which are characterized by a finite number of fields are described. This class includes the one-dimensional reduction of the two-dimensional N=(2|2) superconformal Toda lattice hierarchy possessing the N=4 supersymmetry -- the N=4 Toda chain hierarchy -- which may be relevant in the construction of supersymmetric matrix models. The Lax pair representations of the bosonic and fermionic flows, corresponding local and nonlocal Hamiltonians, finite and infinite discrete symmetries, the first two Hamiltonian structures and the recursion operator connecting all evolution equations and the Hamiltonian structures of the N=4 Toda chain hierarchy are constructed in explicit form. Its secondary reduction to the N=2 supersymmetric alpha=-2 KdV hierarchy is discussed.
With exceptional electrical and mechanical properties and at the same time air-stability, layered MoSi2N4 has recently draw great attention. However, band structure engineering via strain and electric field, which is vital for practical applications, has not yet been explored. In this work, we show that the biaxial strain and external electric field are effective ways for the band gap engineering of bilayer MoSi$_2$N$_4$ and WSi$_2$N$_4$. It is found that strain can lead to indirect band gap to direct band gap transition. On the other hand, electric field can result in semiconductor to metal transition. Our study provides insights into the band structure engineering of bilayer MoSi$_2$N$_4$ and WSi$_2$N$_4$ and would pave the way for its future nanoelectronics and optoelectronics applications.