No Arabic abstract
We report on the deep observations of the bursting pulsar GRO J1744-28, which were performed with XMM-Newton and aimed to clarify the origin of its X-ray emission in quiescence. We detect the source at a luminosity level of $sim10^{34}$ erg s$^{-1}$ with an X-ray spectrum that is consistent with the power law, blackbody, or accretion-heated neutron star atmosphere models. The improved X-ray localization of the source allowed us to confirm the previously identified candidate optical counterpart as a relatively massive G/K~III star at 8 kpc close to the Galactic center, implying an almost face-on view of the binary system. Although we could only find a nonrestricting upper limit on the pulsed fraction of $sim20$%, the observed hard X-ray spectrum and strong long-term variability of the X-ray flux suggest that the source is also still accreting when not in outburst. The luminosity corresponding to the onset of centrifugal inhibition of accretion is thus estimated to be at least two orders of magnitude lower than previously reported. We discuss this finding in the context of previous studies and argue that the results indicate a multipole structure in the magnetic field with the first dipole term of $sim 10^{10}$ G, which is much lower than previously assumed.
The XMM-Newton X-ray observatory performed a pointed observation of the bursting pulsar GRO J1744-28 in April 2001 for about 10 ks during a program devoted to the scan of the Galactic center region. After the discovery of this source by BATSE in December 1995 during a very active bursting phase, it has been in quiescence since April 1997. We present here the first detection of GRO J1744-28 in its quiescent state at a position which is consistent with previous high-energy positions (but not consistent with a proposed IR counterpart). The observed luminosity of the source in quiescence is about 6 orders of magnitude weaker than the luminosity in outburst.
We present the results of the GRANAT/SIGMA hard X-/soft gamma-ray long-term monitoring of the Galactic Center (GC) region concerning the source GRO J1744-28, discovered on 1995 Dec. 2 by CGRO/BATSE. SIGMA observed the region containing the source in 14 opportunities between 1990 and 1997. In two of these observing sessions, corresponding to March 1996 and March 1997, GRO J1744-28 was detected with a confidence level greater than 5(sigma) in the 35-75 keV energy band without detection in the 75-150 keV energy band. For the other sessions, upper limits of the flux are indicated. The particular imaging capabilities of the SIGMA telescope allow us to identify, specifically, the source position in the very crowded GC region, giving us a mean flux of (73.1 +/- 5.5)E-11 and (44.7 +/- 6.4)E-11 ergs cm^-2 s^-1 in the 35-75 keV energy band, for the March 1996 and March 1997 observing sessions, respectively. Combining the March 1997 SIGMA and BATSE observations, we found evidence pointing to the type-II nature of the source bursts for this period. For the same observing campaigns, spectra were obtained in the 35 to 150 keV energy band. The best fit corresponds to an optically thin thermal Bremsstrahlung with F(50 keV)=(3.6 +/- 0.6)E-4 phot cm^-2 s^-1 keV^-1 and kT(Bremss)=28 +/- 7 keV, for the first campaign, and F(50 keV)=(2.3 +/- 0.7)E-4 phot cm^-2 s^-1 keV^-1 and kT(Bremss)=18 (+12/-7) keV, for the second. This kind of soft spectrum is typical of binary sources containing a neutron star as the compact object, in contrast to the harder spectra typical of systems containing a black hole candidate
GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: missing link systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of opportunity to test our understanding of these systems in an entirely unexplored physical regime.
We report on a 10 ks simultaneous Chandra/HETG-NuSTAR observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 years of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors, and well described by a blackbody (BB), a power-law with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disc, we estimate its inner (magnetospheric) radius to be about 4x10^7 cm, which translates to a surface dipole field B~9x10^10 G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a power-law with an exponential rolloff and a 10~keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.
GRO J1744-28, commonly known as the `Bursting Pulsar, is a low mass X-ray binary containing a neutron star and an evolved giant star. This system, together with the Rapid Burster (MXB 1730-33), are the only two systems that display the so-called Type II X-ray bursts. These type of bursts, which last for 10s of seconds, are thought to be caused by viscous instabilities in the disk; however the Type II bursts seen in GRO J1744-28 are qualitatively very different from those seen in the archetypal Type II bursting source the Rapid Burster. To understand these differences and to create a framework for future study, we perform a study of all X-ray observations of all 3 known outbursts of the Bursting Pulsar which contained Type II bursts, including a population study of all Type II X-ray bursts seen by RXTE. We find that the bursts from this source are best described in four distinct phenomena or `classes and that the characteristics of the bursts evolve in a predictable way. We compare our results with what is known for the Rapid Burster and put out results in the context of models that try to explain this phenomena.