A Discontinuous Galerkin Method for General Relativistic Hydrodynamics in thornado


Abstract in English

Discontinuous Galerkin (DG) methods provide a means to obtain high-order accurate solutions in regions of smooth fluid flow while, with the aid of limiters, still resolving strong shocks. These and other properties make DG methods attractive for solving problems involving hydrodynamics; e.g., the core-collapse supernova problem. With that in mind we are developing a DG solver for the general relativistic, ideal hydrodynamics equations under a 3+1 decomposition of spacetime, assuming a conformally-flat approximation to general relativity. With the aid of limiters we verify the accuracy and robustness of our code with several difficult test-problems: a special relativistic Kelvin--Helmholtz instability problem, a two-dimensional special relativistic Riemann problem, and a one- and two-dimensional general relativistic standing accretion shock (SAS) problem. We find good agreement with published results, where available. We also establish sufficient resolution for the 1D SAS problem and find encouraging results regarding the standing accretion shock instability (SASI) in 2D.

Download