Do you want to publish a course? Click here

Enhancing a Neurocognitive Shared Visuomotor Model for Object Identification, Localization, and Grasping With Learning From Auxiliary Tasks

78   0   0.0 ( 0 )
 Added by Fares Abawi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a follow-up study on our unified visuomotor neural model for the robotic tasks of identifying, localizing, and grasping a target object in a scene with multiple objects. Our Retinanet-based model enables end-to-end training of visuomotor abilities in a biologically inspired developmental approach. In our initial implementation, a neural model was able to grasp selected objects from a planar surface. We embodied the model on the NICO humanoid robot. In this follow-up study, we expand the task and the model to reaching for objects in a three-dimensional space with a novel dataset based on augmented reality and a simulation environment. We evaluate the influence of training with auxiliary tasks, i.e., if learning of the primary visuomotor task is supported by learning to classify and locate different objects. We show that the proposed visuomotor model can learn to reach for objects in a three-dimensional space. We analyze the results for biologically-plausible biases based on object locations or properties. We show that the primary visuomotor task can be successfully trained simultaneously with one of the two auxiliary tasks. This is enabled by a complex neurocognitive model with shared and task-specific components, similar to models found in biological systems.



rate research

Read More

222 - Mi Tian , Qiong Nie , Hao Shen 2021
Visual localization is one of the most important components for robotics and autonomous driving. Recently, inspiring results have been shown with CNN-based methods which provide a direct formulation to end-to-end regress 6-DoF absolute pose. Additional information like geometric or semantic constraints is generally introduced to improve performance. Especially, the latter can aggregate high-level semantic information into localization task, but it usually requires enormous manual annotations. To this end, we propose a novel auxiliary learning strategy for camera localization by introducing scene-specific high-level semantics from self-supervised representation learning task. Viewed as a powerful proxy task, image colorization task is chosen as complementary task that outputs pixel-wise color version of grayscale photograph without extra annotations. In our work, feature representations from colorization network are embedded into localization network by design to produce discriminative features for pose regression. Meanwhile an attention mechanism is introduced for the benefit of localization performance. Extensive experiments show that our model significantly improve localization accuracy over state-of-the-arts on both indoor and outdoor datasets.
ObjectGoal Navigation (ObjectNav) is an embodied task wherein agents are to navigate to an object instance in an unseen environment. Prior works have shown that end-to-end ObjectNav agents that use vanilla visual and recurrent modules, e.g. a CNN+RNN, perform poorly due to overfitting and sample inefficiency. This has motivated current state-of-the-art methods to mix analytic and learned components and operate on explicit spatial maps of the environment. We instead re-enable a generic learned agent by adding auxiliary learning tasks and an exploration reward. Our agents achieve 24.5% success and 8.1% SPL, a 37% and 8% relative improvement over prior state-of-the-art, respectively, on the Habitat ObjectNav Challenge. From our analysis, we propose that agents will act to simplify their visual inputs so as to smooth their RNN dynamics, and that auxiliary tasks reduce overfitting by minimizing effective RNN dimensionality; i.e. a performant ObjectNav agent that must maintain coherent plans over long horizons does so by learning smooth, low-dimensional recurrent dynamics. Site: https://joel99.github.io/objectnav/
Object grasping is critical for many applications, which is also a challenging computer vision problem. However, for the clustered scene, current researches suffer from the problems of insufficient training data and the lacking of evaluation benchmarks. In this work, we contribute a large-scale grasp pose detection dataset with a unified evaluation system. Our dataset contains 87,040 RGBD images with over 370 million grasp poses. Meanwhile, our evaluation system directly reports whether a grasping is successful or not by analytic computation, which is able to evaluate any kind of grasp poses without exhausted labeling pose ground-truth. We conduct extensive experiments to show that our dataset and evaluation system can align well with real-world experiments. Our dataset, source code and models will be made publicly available.
Event-based cameras are dynamic vision sensors that can provide asynchronous measurements of changes in per-pixel brightness at a microsecond level. This makes them significantly faster than conventional frame-based cameras, and an appealing choice for high-speed navigation. While an interesting sensor modality, this asynchronous data poses a challenge for common machine learning techniques. In this paper, we present an event variational autoencoder for unsupervised representation learning from asynchronous event camera data. We show that it is feasible to learn compact representations from spatiotemporal event data to encode the context. Furthermore, we show that such pretrained representations can be beneficial for navigation, allowing for usage in reinforcement learning instead of end-to-end reward driven perception. We validate this framework of learning visuomotor policies by applying it to an obstacle avoidance scenario in simulation. We show that representations learnt from event data enable training fast control policies that can adapt to different control capacities, and demonstrate a higher degree of robustness than end-to-end learning from event images.
A segmentation-based architecture is proposed to decompose objects into multiple primitive shapes from monocular depth input for robotic manipulation. The backbone deep network is trained on synthetic data with 6 classes of primitive shapes generated by a simulation engine. Each primitive shape is designed with parametrized grasp families, permitting the pipeline to identify multiple grasp candidates per shape primitive region. The grasps are priority ordered via proposed ranking algorithm, with the first feasible one chosen for execution. On task-free grasping of individual objects, the method achieves a 94% success rate. On task-oriented grasping, it achieves a 76% success rate. Overall, the method supports the hypothesis that shape primitives can support task-free and task-relevant grasp prediction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا