Since the 1970s, much of traditional interferometric imaging has been built around variations of the CLEAN algorithm, in both terminology, methodology, and algorithm development. Recent developments in applying new algorithms from convex optimization to interferometry has allowed old concepts to be viewed from a new perspective, ranging from image restoration to the development of computationally distributed algorithms. We present how this has ultimately led the authors to new perspectives in wide-field imaging, allowing for the first full individual non-coplanar corrections applied during imaging over extremely wide-fields of view for the Murchison Widefield Array (MWA) telescope. Furthermore, this same mathematical framework has provided a novel understanding of wide-band polarimetry at low frequencies, where instrumental channel depolarization can be corrected through the new $deltalambda^2$-projection algorithm. This is a demonstration that new algorithm development outside of traditional radio astronomy is valuable for the new theoretical and practical perspectives gained. These perspectives are timely with the next generation of radio telescopes coming online.