No Arabic abstract
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 $mu$J. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone. We devise an experimental scheme allowing the XFEL beam to collide with itself under a finite angle, and thus act as both pump and probe field for the effect. The signature of vacuum birefringence is encoded in polarization-flipped signal photons to be detected with high-purity x-ray polarimetry. Our findings for idealized scenarios underline that the discovery potential of solely XFEL-based setups can be comparable to those involving optical high-intensity lasers. For currently achievable scenarios, we identify several key details of the x-ray optical ingredients that exert a strong influence on the magnitude of the desired signatures.
A scheme for an X-ray free electron laser is proposed, based on a Raman process occurring during the interaction between a moderately relativistic bunch of free electrons, and twin intense short pulse lasers interfering to form a transverse standing wave along the electron trajectories. In the high intensity regime of the Kapitza-Dirac effect, the laser ponderomotive potential forces the electrons into a lateral oscillatory motion, resulting in a Raman scattering process. I show how a parametric process is triggered, resulting in the amplification of the Stokes component of the Raman-scattered photons. Experimental operating parameters and implementations, based both on LINAC and Laser Wakefield Acceleration techniques, are discussed.
Tunable polarization over a wide spectral range is a required feature of light sources employed to investigate the properties of local symmetry in both condensed and low-density matter. Among new-generation sources, free-electron lasers possess a unique combination of very attractive features, as they allow to generate powerful and coherent ultra-short optical pulses in the VUV and X-ray spectral range. However, the question remains open about the possibility to freely vary the light polarization of a free-electron laser, when the latter is operated in the so-called nonlinear harmonic-generation regime. In such configuration, one collects the harmonics of the free-electron laser fundamental emission, gaining access to the shortest possible wavelengths the device can generate. In this letter we provide the first experimental characterization of the polarization of the harmonic light produced by a free-electron laser and we demonstrate a method to obtain tunable polarization in the VUV and X-ray spectral range. Experimental results are successfully compared to those obtained using a theoretical model based on the paraxial solution of Maxwells equations. Our findings can be expected to have a deep impact on the design and realization of experiments requiring full control of light polarization to explore the symmetry properties of matter samples.
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method. While synchrotrons have large communities of XAS users, its use on X-Ray Free Electron Lasers (XFEL) facilities has been rather limited. At a first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of XFEL sources seem to prevent high-quality XAS measurements without accumulating over many shots. Here, we demonstrate for the first time the collection of single-shot XAS spectra on an XFEL, with error bars of only a few percent, over tens of eV. We show how this technique can be extended over wider spectral ranges towards Extended X-ray Absorption Fine Structure (EXAFS) measurements, by concatenating a few tens of single-shot measurements. Such results open indisputable perspectives for future femtosecond time resolved XAS studies, especially for transient processes that can be initiated at low repetition rate.
A superconducting linear accelerator operating in continuous-wave mode could produce X-ray free electron lasers (XFEL) at megahertz repetition rate, with the capability that delivering wide spectral range coherent radiation to multi end stations. In this Letter, the energy recovery Linac (ERL) mode is proposed to flexibly control the electron beam energy for a continuous-wave superconducting Linac. Theoretical investigations and multi-dimensional numerical simulations are applied to the Linac case of Shanghai high-repetition-rate XFEL and extreme light facility. The results show that, with ERL operation in the last 25 cryo-modules, the strict requirements on RF power system could be significantly relaxed. And if one exhaust the RF power, the maximum electron beam energy can be enhanced from 8.74 GeV to 11.41GeV in ERL mode. The optimization of the ERL operation, the multi-energy electron beam transport and the XFEL performance improvements are presented.