We consider a system of one-dimensional fermions moving in one direction, such as electrons at the edge of a quantum Hall system. At sufficiently long time scales the system is brought to equilibrium by weak interactions between the particles, which conserve their total number, energy, and momentum. Time evolution of the system near equilibrium is described by hydrodynamics based on the three conservation laws. We find that the system supports three sound modes. In the low temperature limit one mode is a pure oscillation of particle density, analogous to the ordinary sound. The other two modes involve oscillations of both particle and entropy densities. In the presence of disorder, the first sound mode is strongly damped at frequencies below the momentum relaxation rate, whereas the other two modes remain weakly damped.