Do you want to publish a course? Click here

Optimizing direct laser-driven electron acceleration and energy gain at ELI-NP

64   0   0.0 ( 0 )
 Added by Etele Molnar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study and discuss electron acceleration in vacuum interacting with fundamental Gaussian pulses using specific parameters relevant for the multi-PW femtosecond lasers at ELI-NP. Taking into account the characteristic properties of both linearly and circularly polarized Gaussian beams near focus we have calculated the optimal values of beam waist leading to the most energetic electrons for given laser power. The optimal beam waist at full width at half maximum correspond to few tens of wavelengths, $Delta w_0=left{13,23,41right}lambda_0$, for increasing laser power $P_0 = left{0.1,1,10right}$ PW. Using these optimal values we found an average energy gain of a few MeV and highest-energy electrons of about $160$ MeV in full-pulse interactions and in the GeV range in case of half-pulse interaction.



rate research

Read More

183 - Etele Molnar , Dan Stutman 2021
A detailed study of direct laser-driven electron acceleration in paraxial Laguerre-Gaussian modes corresponding to helical beams $text{LG}_{0m}$ with azimuthal modes $m=left{1,2,3,4,5right}$ is presented. Due to the difference between the ponderomotive force of the fundamental Gaussian beam $text{LG}_{00}$ and helical beams $text{LG}_{0m}$ we found that the optimal beam waist leading to the most energetic electrons at full width at half maximum is more than twice smaller for the latter and corresponds to a few wavelengths $Delta w_0=left{6,11,19right}lambda_0$ for laser powers of $P_0 = left{0.1,1,10right}$ PW. We also found that for azimuthal modes $mgeq 3$ the optimal waist should be smaller than $Delta w_0 < 19 lambda_0$. Using these optimal values we have observed that the average kinetic energy gain of electrons is about an order of magnitude larger in helical beams compared to the fundamental Gaussian beam. This average energy gain increases with the azimuthal index $m$ leading to collimated electrons of a few $100$ MeV energy in the direction of the laser propagation.
64 - P. M. King , K. Miller , N. Lemos 2020
The two-temperature relativistic electron spectrum from a low-density ($3times10^{17}$~cm$^{-3}$) self-modulated laser wakefield accelerator (SM-LWFA) is observed to transition between temperatures of $19pm0.65$ and $46pm2.45$ MeV at an electron energy of about 100 MeV. When the electrons are dispersed orthogonally to the laser polarization, their spectrum above 60 MeV shows a forking structure characteristic of direct laser acceleration (DLA). Both the two-temperature distribution and the forking structure are reproduced in a quasi-3D textsc{Osiris} simulation of the interaction of the 1-ps, moderate-amplitude ($a_{0}=2.7$) laser pulse with the low-density plasma. Particle tracking shows that while the SM-LWFA mechanism dominates below 40 MeV, the highest-energy ($>60$ MeV) electrons gain most of their energy through DLA. By separating the simulated electric fields into modes, the DLA-dominated electrons are shown to lose significant energy to the longitudinal laser field from the tight focusing geometry, resulting in a more accurate measure of net DLA energy gain than previously possible.
Electron acceleration by relativistically intense laser beam propagating along a curved surface allows to split softly the accelerated electron bunch and the laser beam. The presence of a curved surface allows to switch an adiabatic invariant of electrons in the wave instantly leaving the gained energy to the particles. The efficient acceleration is provided by the presence of strong transient quasistationary fields in the interaction region and a long efficient acceleration length. The curvature of the surface allows to select the accelerated particles and provides their narrow angular distribution. The mechanism at work is explicitly demonstrated in theoretical models and experiments.
The acceleration of super-heavy ions (SHIs) from plasmas driven by ultrashort (tens of femtoseconds) laser pulses is a challenging topic waiting for breakthrough. The detecting and controlling of the ionization process, and the adoption of the optimal acceleration scheme are crucial for the generation of highly energetic SHIs. Here, we report the experimental results on the generation of deeply ionized super-heavy ions (Au) with unprecedented energy of 1.2 GeV utilizing ultrashort laser pulses (22 fs) at the intensity of 10^22 W/cm2. A novel self-calibrated diagnostic method was developed to acquire the absolute energy spectra and charge state distributions of Au ions abundant at the charge state of 51+ and reaching up to 61+. The measured charge state distributions supported by 2D particle-in-cell simulations serves as an additional tool to inspect the ionization dynamics associated with SHI acceleration, revealing that the laser intensity is the crucial parameter for the acceleration of Au ions over the pulse duration. The use of double-layer targets results in a prolongation of the acceleration time without sacrificing the strength of acceleration field, which is highly favorable for the generation of high-energy super heavy ions.
We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy electron production proceeds via two stages of direct laser acceleration, an initial stochastic backward stage, and a final non-stochastic forward stage. The initial stochastic stage, driven by the reflected laser pulse, provides the pre-acceleration needed to enable the final stage to be non-stochastic. Energy gain in the electrostatic potential, which has been frequently considered to enhance stochastic heating, is only of secondary importance. The mechanism underlying the production of high energy electrons by laser pulses incident on solid density targets is of direct relevance to applications involving multipicosecond laser-plasma interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا