Do you want to publish a course? Click here

Incentivizing Stable Path Selection in Future Internet Architectures

80   0   0.0 ( 0 )
 Added by Simon Scherrer
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

By delegating path control to end-hosts, future Internet architectures offer flexibility for path selection. However, there is a concern that the distributed routing decisions by end-hosts, in particular load-adaptive routing, can lead to oscillations if path selection is performed without coordination or accurate load information. Prior research has addressed this problem by devising path-selection policies that lead to stability. However, little is known about the viability of these policies in the Internet context, where selfish end-hosts can deviate from a prescribed policy if such a deviation is beneficial fromtheir individual perspective. In order to achieve network stability in future Internet architectures, it is essential that end-hosts have an incentive to adopt a stability-oriented path-selection policy. In this work, we perform the first incentive analysis of the stability-inducing path-selection policies proposed in the literature. Building on a game-theoretic model of end-host path selection, we show that these policies are in fact incompatible with the self-interest of end-hosts, as these strategies make it worthwhile to pursue an oscillatory path-selection strategy. Therefore, stability in networks with selfish end-hosts must be enforced by incentive-compatible mechanisms. We present two such mechanisms and formally prove their incentive compatibility.

rate research

Read More

Internet routing can often be sub-optimal, with the chosen routes providing worse performance than other available policy-compliant routes. This stems from the lack of visibility into route performance at the network layer. While this is an old problem, we argue that recent advances in programmable hardware finally open up the possibility of performance-aware routing in a deployable, BGP-compatible manner. We introduce ROUTESCOUT, a hybrid hardware/software system supporting performance-based routing at ISP scale. In the data plane, ROUTESCOUT leverages P4-enabled hardware to monitor performance across policy-compliant route choices for each destination, at line-rate and with a small memory footprint. ROUTESCOUTs control plane then asynchronously pulls aggregated performance metrics to synthesize a performance-aware forwarding policy. We show that ROUTESCOUT can monitor performance across most of an ISPs traffic, using only 4 MB of memory. Further, its control can flexibly satisfy a variety of operator objectives, with sub-second operating times.
60 - Li Ye , Hong Xie , John C.S. Lui 2018
Emerging new applications demand the current Internet to provide new functionalities. Although many future Internet architectures and protocols have been proposed to fulfill such needs, ISPs have been reluctant to deploy many of these architectures. We believe technical issues are not the main reasons as many of these new proposals are technically sound. In this paper, we take an economic perspective and seek to answer: Why most new Internet architectures failed to be deployed? How to enhance the deployability of a new architecture? We develop a game-theoretic model to characterize the outcome of an architectures deployment through the equilibrium of ISPs decisions. This model enables us to: (1) analyze several key factors of the deployability of a new architecture such as the number of critical ISPs and the change of routing path; (2) explain the deploying outcomes of some previously proposed architectures/protocols such as IPv6, DiffServ, CDN, etc., and shed light on the Internet flattening phenomenon; (3) predict the deployability of a new architecture such as NDN, and compare its deployability with competing architectures. Our study suggests that the difficulty to deploy a new Internet architecture comes from the coordination of distributed ISPs. Finally, we design a coordination mechanism to enhance the deployability of new architectures.
323 - Jinfa Wang , Siyuan Jia , Hai Zhao 2017
Detecting the anomaly behaviors such as network failure or Internet intentional attack in the large-scale Internet is a vital but challenging task. While numerous techniques have been developed based on Internet traffic in past years, anomaly detection for structured datasets by complex network have just been of focus recently. In this paper, a anomaly detection method for large-scale Internet topology is proposed by considering the changes of network crashes. In order to quantify the dynamic changes of Internet topology, the network path changes coefficient(NPCC) is put forward which will highlight the Internet abnormal state after it is attacked continuously. Furthermore we proposed the decision function which is inspired by Fibonacci Sequence to determine whether the Internet is abnormal or not. That is the current Internet is abnormal if its NPCC is beyond the normal domain which structured by the previous k NPCCs of Internet topology. Finally the new Internet anomaly detection method was tested over the topology data of three Internet anomaly events. The results show that the detection accuracy of all events are over 97%, the detection precision of each event are 90.24%, 83.33% and 66.67%, when k = 36. According to the experimental values of the index F_1, we found the the better the detection performance is, the bigger the k is, and our method has better performance for the anomaly behaviors caused by network failure than that caused by intentional attack. Compared with traditional anomaly detection, our work may be more simple and powerful for the government or organization in items of detecting large-scale abnormal events.
MPTCP is a new transport protocol that enables mobile devices to use multiple physical paths simultaneously through several network interfaces, such as WiFi and Cellular. However, wireless path capacities change frequently in the mobile environments, causing challenges for path selection. For example, WiFi associated paths often become poor as devices walk away, since WiFi has intermittent connectivity caused by the short signal coverage and stochastic interference. MPTCPs native decision based on hysteretic TCP-layer estimation will miss the real switching point of wireless quality, which may cumulate packets on the broken path and causes serious packets reinjection. Through analyzing a unique dataset in the wild, we quantitatively study the impact of MAC-layer factors on the aggregated performance of MPTCP. We then propose a decision tree approach for cross-layer path selection that decides which path to carry the incoming packets dynamically according to the prior learned schemes. A prototype of the path selection system named SmartPS, which proactively probes the wireless environments, is realized and deployed in Linux and Android. Evaluation results demonstrate that our SmartPS can efficiently utilize the faster path, with goodput improvements of up to 29%.
Path-aware networks (PANs) are emerging as an intriguing new paradigm with the potential to significantly improve the dependability and efficiency of networks. However, the benefits of PANs can only be realized if the adoption of such architectures is economically viable. This paper shows that PANs enable novel interconnection agreements among autonomous systems, which allow to considerably improve both economic profits and path diversity compared to todays Internet. Specifically, by supporting packet forwarding along a path selected by the packet source, PANs do not require the Gao-Rexford conditions to ensure stability. Hence, autonomous systems can establish novel agreements, creating new paths which demonstrably improve latency and bandwidth metrics in many cases. This paper also expounds two methods to set up agreements which are Pareto-optimal, fair, and thus attractive to both parties. We further present a bargaining mechanism that allows two parties to efficiently automate agreement negotiations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا