No Arabic abstract
To understand the phase transition phenomena, information theoretical approaches can pick up some important properties of the phenomena based on the probability distribution. In this paper, we show information theoretical aspects of the 3-dimensional 3-state Potts model with the external field which is corresponding to the QCD effective model with heavy quarks. The transfer mutual information which represents the information flow of two spin variables is numerically estimated based on the Markov-chain Monte-Carlo method. The transfer mutual information has the peak near the confinement-deconfinement transition, and it may be used to detect the precursors of the transition. Since the transfer mutual information still have the peak even if the Polyakov-loop changes continuously and smoothly, we may pick up some aspects of the confinement-deconfinement nature from the information flow properties. Particularly, the transfer mutual information shows the significantly different behavior below and above the Roberge-Weiss endpoint existed in the pure imaginary chemical potential region, which may indicate the system change by the confinement-deconfinement transition.
The isospin chemical potential region is known as the sign-problem free region of quantum chromodynamics (QCD). In this paper, we introduce the isospin chemical potential to the three-dimensional three-state Potts model to mimic the dense QCD; e.g., the QCD effective model with heavy quarks at finite density. We call it as QCD-like Potts model. The QCD-like Potts model does not have the sign problem, but we can expect that it shares some properties with QCD. Since we can obtain the non-approximated Potts spin configuration at finite isospin chemical potential where the simple Metropolis algorithm can work, we perform the persistent homology analysis towards exploring the dense spatial structure of QCD. We show that the averaged birth-death ratio has the same information with the Polyakov loop, but the maximum birth-death ratio has additional information near the phase transition.
In this work, we carried out quantum many-body studies of magnetic monopole ensembles through numerical simulations of the path integral for one- and two-component Coulomb Bose systems. We found the relation between the critical temperature for the Bose-Einstein condensation phase transition and the Coulomb coupling strength using two methods, the finite-size scaling of the superfluid fraction and statistical analysis of permutation cycles. After finding parameters that match the correlation functions measured in our system with the correlation functions previously measured on the lattice, we arrived at an effective quantum model of color magnetic monopoles in QCD. From this matched model, we were able to extract the monopole contribution to QCD equation of state near $T_text{c}$.
The low energy effective potential for the model with a light scalar and a heavy scalar is derived. We perform the path integration for both heavy and light scalars and derive the low energy effective potential in terms of only the light scalar. The effective potential is independent of the renormalization scale approximately. By setting the renormalization scale equal to the mass of the heavy scalar, one finds the corrections with the logarithm of the ratio of the two scalar masses. The large logarithm is summed with the renormalization group (RG) and the RG improved effective potential is derived. The improved effective potential includes the one-loop correction of the heavy scalar and the leading logarithmic corrections due to the light scalar. We discuss the implication of the corrections to the parameters of the mass squared dimension as well as the cosmological constants.
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio model with the entanglement vertex (EPNJL model). We propose a practical way of calculating meson screening masses in the NJL-type effective models. The method based on the Pauli-Villars regularization solves the well-known difficulty that the evaluation of screening masses is not easy in the NJL-type effective models. The method is applied to analyze temperature dependence of pion screening masses calculated with state-of-the-art lattice simulations with success in reproducing the lattice QCD results. We predict the temperature dependence of pole mass by using EPNJL model.
We apply the path optimization method to a QCD effective model with the Polyakov loop at finite density to circumvent the model sign problem. The Polyakov-loop extended Nambu--Jona-Lasinio model is employed as the typical QCD effective model and then the hybrid Monte-Carlo method is used to perform the path integration. To control the sign problem, the path optimization method is used with complexification of temporal gluon fields to modify the integral path in the complex space. We show that the average phase factor is well improved on the modified integral-path compared with that on the original one. This indicates that the complexification of temporal gluon fields may be enough to control the sign problem of QCD in the path optimization method.